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Moment matching by projection on Krylov subspace

Overview articles concerning moment matching through Krylov-subspace reduction are e.g. [1] or [2].

Arnoldi Algorithm

If we use a Galerkin projections, V =W , only one projection matrix is needed and can be calculated
with an Arnoldi Algorithm.

• The following recursion is satisfied:

M ⋅V j = V j ⋅Hj + f j ⋅ e
H
j (1)

• Hj = V
H
j ⋅M ⋅Vj an upper Hessenberg matrix

• Vj ⋅V
H
j = Ij and Vj ⋅ f j = 0.

Algorithm 1 Arnoldi Algorithm

1: Input: M ∈ R2N×2N ,r ∈ R2N

2: Output: Orthogonal Basis Vj ∈ R2N×j for Kj(M,r)
3: v1 = r

∥r∥ ;

4: w =M ⋅ v1; α1 = v
H
1 ⋅w;

5: f1 = w - α1v1;
6: V1 = [v1] ; H = [α1];
7: for i= 1 ,.., j-1 do
8: βi = ∥fi∥ ; vi+1 = fi/βi
9: Vi+1 = [Vi, vi+1]

10: Ĥi = [
Hi

βi ⋅ e
H
i

]

11: w = M ⋅ vi+1;
12: h = V H

i+1
⋅w; fi+1 =w −Vi+1 ⋅h;

13: Hi+1 = [Ĥi, h];
14: end for
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Remarks:

• Krylov-subspace based methods are used for the solution of generalized eigenproblems in most
of the FE solvers, see Example 01. They have a high convergence rate. If you want to calculate
eigenfrequencies within a specific range you create a Krylov subspace with expansion point
within this eigenfrequency range. Afterwards the eigenvalues and up-projected eigenmodes of
the reduced model match with the eigenvalues of the original system.

• Krylov methods have simple derivation and algorithms.

• Originally, both the Arnoldi and the Lanczos algorithms were developed for SISO systems.

• Krylov methods can be applied to MIMO systems where B ∈ RN×p, C ∈ Rr×N , p and/or r are
bigger than one, at the expense of increased bookkeeping. For MIMO systems the matrix Padé
via Lanczos (MPVL) [3] respectively the symmetric PVL (SymPVL) [4] for symmetric systems
or block Arnoldi [5, 6] algorithms can be used.

• Only matrix-vector multiplications are required – no matrix factorizations or inversions. There
is no need to compute the transformed nth-order model and then truncate. This reduces the
ill-conditioning that arises in SVD methods.

• For Petrov-Galerkin (oblique) projections two projection matrices are required which can be
calculated simultaneous with the Two-sided Lanczos Algorithm, see e.g. [7, Chapter 10.4.2] which
calculates two biorthogonal bases V j ∈R

N×J and W ∈RN×J where the following recursions are
satisfied:

M ⋅V j = V j ⋅ T j + f j ⋅ e
H
j (2)

MH
⋅W j =W j ⋅ T

H
j + gj ⋅ e

H
j (3)

where T j =W
H
j ⋅M ⋅V j is a tridiagonal matrix, WH

j ⋅V j = Ij , W
H
j gj = 0 and V H

j ⋅ f j = 0.

Algorithm 2 Two-Sided Lanczos Algorithm

1: Input: M ∈ RN×N ,r ∈ RN ,sH ∈ RN

2: Output: Bi-orthogonal Basis Vj ∈ RN×j and Wj ∈ RN×j for Kj(M,r)
and Kj(M

H , sH) respectively satisfying W T
j
⋅Vj = Ij

3: β1 =
√
∣rH ⋅ sH ∣, γ1 = sign(r

H ⋅ sH)β1
4: v1 =

r
β1
, w1 =

sH
γ1

5: for i= 1 ,.., j-1 do
6: αi =w

H
i
⋅M ⋅ vi;

7: pi =M ⋅ vi − αi ⋅ vi − γi ⋅ vi−1;
8: qi =M

H ⋅wi − αi ⋅wi − βi ⋅wi−1;

9: βi+1 =
√
∣pH

i
⋅ qi∣, γi+1 = sign(p

H
i
⋅ qi)βi+1

10: vi+1 =
pi
βi+1

11: wi+1 =
qi
γi+1

12: end for
13: V = [v1, ... , vj] , W = [w1, ... ,wj]

• One drawback of Krylov reduction methods is that stability or other system properties like
passivity are not necessarily preserved. The topic of stability preservation for Krylov-subspace
reduction methods is discussed e.g. in [8, 9]. One possibility to preserve stability is preservation
via post-processing (restarting), see e.g. [10, 11, 12].
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• Computational efficiency of Krylov Algorithms explained in Landau Notation:

Algorithm 3 rational Arnoldi algorithm

1: Input: matrix M , R, J
2: Output: basis V
3: /*Initialize for every expansion point*/

M = (A − sk ⋅ I)
−1, R = (A − sk ⋅ I)

−1 ⋅B
Inverse of M−1 is not explicitly built instead a [L,U] = LUDecomposition(M−1) is used.
Computational effort LU(M) is O(Nβ) with 1.1 ≤ β ≤ 1.5 for sparse matrices.

4: V = Ṽ = R
∥R∥2

5: for Matching Order do
6: R =M ⋅ Ṽ

Action of M on Ṽ use R = EquationSolve(L,U , Ṽ )
O(Nα) backward/forward substitutions with 1 ≤ α ≤ 1.2

7: Ṽ = GramSchmidt(R,V )
O(Np2) Frobenius products where p is number of columns of V

8: V = [V Ṽ ]

9: end for

Krylov-subspaces for Second Order Systems

For the model reduction of mechanical systems, the second order structure of the system is kept if
model reduction is done on the second order level without a transformation to a first order system.
In addition, for orthogonal reduction W = V and a full rank projection matrix the system properties
of the second order matrices are preserved.

The transfer matrix of the second order system is

H(s) = Ce ⋅ (s
2M e + sDe +Ke)

−1
⋅Be (4)

and the power series of the Laplace transform of the elastic coordinateQ(s) around a specific expansion
point sk can be written as

Q(s) =Rsk
0 +R

sk
1 (s − sk) +⋯ =

∞

∑
j=0

Rsk
j (s − sk)

j , (5)

where Rsk
j are called second order system moments and the relation between the output moments and

the second order system moments
T sk

j = Ce ⋅R
sk
j (6)

can be easily identified.

Definition 0.1. A second order Krylov-subspace is defined as

GJ(M1,M2,R1) = colspan{P 0,P 1, . . . ,P J−1} (7)

where

{
P o =R1, P 1 =M1 ⋅R1

P i =M1 ⋅P i−1 +M2 ⋅P i−2, i = 2,3, . . .
(8)

and M1, M2 ∈ RN×N , R1 ∈ RN×p are constant matrices. The columns of R1 are called the starting
vectors and the matrices P i are called basic blocks.
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It can be shown, see e.g. [13, 14, 15] that the second order Krylov-subspace GJ spans the same space
as the upper half of the standard Krylov-subspace KJ(M ,R), where M ,R are the matrices obtained
by rewriting the recursion (8) into a matrix form

[
P i

P i−1
]

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

P̃i

= [
M1 M2

I 0
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̃

⋅ [
P i−1

P i−2
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P̃i−1

(9)

and R = [
R1

0
] is used as a starting vector. In a next step, the second order Arnoldi (SOAR) algorithm,

compare e.g. [13, 14] is repeated in its simplest form: single input, only one expansion point, no
orthogonalization to an additional already given initial basis, real expansion point and no deflation
strategy. The SOAR Algorithm produces an orthonormal basis V u and the upper Hessenberg matrix
T of the second order Krylov-subspace Gr(M1,M2,r1).

Algorithm 4 Second Order Arnoldi Algorithm (SOAR)

1: Input: matrix M1, M2, r1, J
2: Output: basis V u and Hessenberg matrix T
3: /* Initialize */
4: pu =

r1

∥r1∥2
5: pl = 0
6: V u(∶,1) = pu

7: V l(∶,1) = pl

8: for j = 1 ∶ J do
9: pu =M1 ⋅V u(∶,j) +M2 ⋅V l(∶,j)

10: pl = V u(∶,j)

11: for k = 1 ∶ j do
12: T (k,j) = V

T
u(∶,k) ⋅ pu

13: pu = pu −V u(∶,k)T (k,j)
14: pl = pl −V l(∶,k)T (k,j)
15: end for
16: T (j+1,j) = ∥pu∥2

17: V u(∶,j+1) =
pu

T (j+1,j)
18: V l(∶,j+1) =

pl

T (j+1,j)
19: end for

The basic recurrence of the SOAR algorithm is:

M1 ⋅V u(∶,1∶J) +M2 ⋅V l(∶,1∶J) = V u(∶,1∶J) ⋅ T (1∶K,1∶J) +V u(∶,J+1) ⋅ e
T
J ⋅ T (J+1,J),

V u(∶,1∶J) = V l(∶,1∶J) ⋅ T (1∶J,1∶J) +V l(∶,J+1) ⋅ e
T
J ⋅ T (J+1,J).

(10)

In addition, the basic recurrence of the SOAR process can be written in compact form

[
M1 M2

I 0
] ⋅ [

V u(∶,1∶J)

V l(∶,1∶J)
] = [

V u(∶,J+1)

V l(∶,J+1)
] ⋅ T̂ J , (11)

where T̂ J is an ((J + 1) × J upper Hessenberg matrix of the form T̂ J = [
T (1∶K,1∶J)

eTJ ⋅ T (j+1,j)
]. The essential

difference between the SOAR algorithm and the Arnoldi algorithm is the fact that the SOAR algorithm
enforces the orthonormality of the vectors V u of dimension N whereas the Arnoldi process enforces

the orthonormality of the vector [
V u

V l
] of dimension 2N . That is, the SOAR algorithm ensures only
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the orthonormality of V u, however, the orthonormality of V l follows due to the recursion properties
of the second order Arnoldi algorithm. As proven by [14] for SISO systems the system moment Rsk

j

is analytically related to the output Hessenberg matrix T by the following analytical expression:

[
Rsk

j

Rsk
j+1

] = [
V u

V l
] T j

(1∶K,1∶J)
⋅ e1, for j = 0,1, . . . , J − 1. (12)

Another property of the SOAR algorithm is, e.g. proven in [14]: The first unmatched output moment
error ∆T sk

j+1 = T
sk
j+1 − T̄

sk
j+1 can be calculated as

∆T sk
j+1 = T

sk
j+1 − T̄

sk
j+1 = Ce

⎛

⎝

j

∏
i=1

T (i+1,i)
⎞

⎠
. (13)

For MIMO Systems a block second order Arnoldi algorithm (BSOAR), explained e.g. in [16, 14]
can be used to calculate an orthonormal basis of the second order Krylov-subspace GJ for MIMO
systems. The major difference between the BSOAR algorithm to the second order Arnoldi (SOAR)
is the initial step. The orthonormality of the initial matrix is preserved by using the QR decomposed
Q ⋅R = QR(R1) starting matrix. In this context, in Morembs the dual second order rational Arnoldi
algorithm explained in [17] is implemented. The dual second order algorithm used in Morembs is
optimized for the usage of model reduction in EMBS. The algorithm has the following properties
which are very important to successfully reduce mechanical systems. Without considering these facts
wrong reduction results are achieved

• Moment matching can be achieved at multiple arbitrary expansion points sk. First, an orthogonal
basis V 1 of the Krylov-subspace

G
s1
J
s1
b

(−Ǩ
−1
1 ⋅ Ď1,−Ǩ

−1
1 ⋅M e,−Ǩ

−1
1 ⋅Be) (14)

is built. In successive steps the i-th orthogonal bases V i of the Krylov-subspace

G
si
J
si
b

(−Ǩ
−1
i ⋅ Ďi,−Ǩ

−1
i ⋅M e,−Ǩ

−1
i ⋅Be) (15)

are calculated, where in the Gram-Schmidt procedure the new basis vectors are also orthogonal-
ized to previous calculated bases

V i ⊥ V i−1 ⊥ ⋯ ⊥ V 1. (16)

If both projection matrices V ≠ W are needed, the same procedure is done with the output
Krylov-subspace, for details see [17].

• In modal model reduction of EMBS usually mass orthogonal eigenmodes ϕT ⋅M e ⋅ ϕ = I are
used in the projection process. For model reduction with Krylov-subspaces a mass orthogonal
projection matrix is calculated if in the Gram-Schmidt orthogonalization instead of the standard
scalar product

< u,v >= vT
⋅u (17)

the energy scalar product with the regular mass matrix M e

< u,v >M e
= vT

⋅M e ⋅u (18)

is used. The calculated projection matrices are then automatically mass orthogonal V T ⋅M ⋅V = I
after the model reduction with the Krylov-subspace. The usage of an energy scalar product (18)
is computationally more expensive then the usage of the standard scalar product (17) due to the
fact that always an expensive matrix vector product with a matrix of size N is performed.
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• Krylov-subspace orthogonal to an initial basis: For model reduction in EMBS it is important
that the projection matrices are orthogonal to the mass orthogonal rigid body modes. The mass
orthogonal rigid body modes ϕrigid are analytically calculated from the translational St and
rotational Sr projectors and are given as an initial mass orthogonal basis in the Gram-Schmidt
orthogonalization process. Another possibility is the usage of input and output matrices which
are mass orthogonal to rigid body modes

Be⊥ = (I −M e ⋅ϕrigid ⋅ϕ
T
rigid) ⋅Be (19)

Ce⊥ = Ce ⋅ (I −M e ⋅ϕrigid ⋅ϕ
T
rigid)

T . (20)

With such input and output matrices only elastic deformations are excited. A physical explana-
tion of this transformation can be found e.g. in [18, 19].

• Rational approximation: Usually a combination of purely imaginary, purely real and complex
expansion points are used in the model reduction process. The system matrices of the original
system M e,De,Ke,Be,Ce are real and it is important that the reduced order system is also
real. This criterion is automatically fulfilled if the expansion points are real numbers, but not if
at least one sk ∈ C of them has a nonzero imaginary part I(sk) ≠ 0. The important observation
from [20] is used to achieve a real reduced system. That is, for every expansion point sk implicitly
the conjugate complex expansion point s̄k is also used as an expansion point.

• Usually not all vectors of the block Krylov-subspace are linearly independent. The linearly
dependent vectors are deleted with a process called deflation, compare e.g. [21]. The same ideas
explained in [13] are used to deflate the linearly dependent vectors in the SOAR procedure.

5.2. Selection of expansion points

The performance of Krylov-subspace based reduction methods clearly depends on the choice of ex-
pansion points and on the order up to which the moments are matched. The selection of appropriate
combinations of sk, J̄b and J̄c is no trivial task and needs some experience by the user.

• First, only expansion points with a non-singular matrix pencil (A − skE) are allowed.

• The complex expansion points sk = s
r
k+is

i
k could be either purely real sk = s

r
k+0, purely imaginary

sk = 0 + is
i
k or a combination sk = s

r
k + is

i
k.

• For model reduction of mechanical systems usually purely imaginary expansion points within the
interesting frequency range sk = s

i
k ∈ [ωmin, ωmax] are chosen because such expansion points allow

a physical explanation and usually lead to a good approximation in the interesting frequency
range.

• Purely imaginary expansion point can be interpreted as the frequency response of the dynam-
ical system excited with an harmonic force at the input nodes. They lead to really good ap-
proximation of the reduced transfer function towards the original transfer function in a small
neighborhood around the imaginary expansion points.

• For real expansion points, the reduced transfer function converges towards the original transfer
in a larger neighborhood but not as good as for an imaginary expansion point.

• Usually better results are achieved if multiple expansion points are chosen and more moments
are matched at the specific expansion point.
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