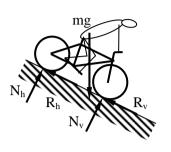
Technische Mechanik I SS 2009 P 2

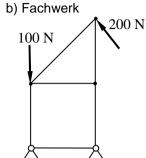
26. August 2009

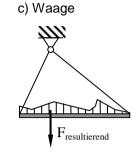
Bachelor-Prüfung in Technischer Mechanik I

Nachname, Vorname								
MatrNummer	Fachrichtung							

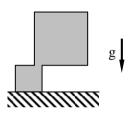
- 1. Die Prüfung umfasst 7 Aufgaben auf 5 Blättern.
- 2. Nur vorgelegte Fragen beantworten, keine Zwischenrechnungen eintragen.
- 3. Alle Ergebnisse sind grundsätzlich in den gegebenen Größen auszudrücken.
- 4. Die Blätter der Prüfung dürfen nicht getrennt werden.
- 5. Als Hilfsmittel sind ausschließlich 6 Seiten Formelsammlung (entspricht 3 Blättern DIN-A4 doppelseitig) zugelassen. Elektronische Geräte sind ausdrücklich nicht zugelassen.
- 6. Bearbeitungszeit: 120 Minuten.
- 7. Unterschreiben Sie die Prüfung **erst** beim Eintragen Ihres Namens in die Sitzliste.

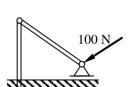

(Unterschrift)

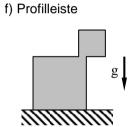

Punkte	Korrektur
\sum_{i}	
_	


Aufgabe 1 (6 Punkte)

Welche der dargestellten Systeme sind im statischen Gleichgewicht?

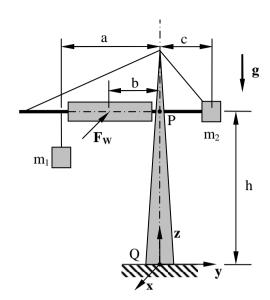

a) ungebremstes Fahrrad





d) Profilleiste

e) Stabwerk



Kreuzen Sie die richtige Lösung an.

	Gleichgewicht	kein Gleichgewicht	keine Aussage möglich
а			
b			
С			
d			
е			
f			

Aufgabe 2 (7 Punkte)

Ein Baukran, der eine Last (Masse m₁) trägt und über ein Gegengewicht (Masse m_2) verfüat. soll mit einem Werbeschild ausgestattet werden. An diesem greift die Windkraft \mathbf{F}_{w} mit bekanntem Betrag F_{W} in Richtung der negativen x-Achse an. Das Eigengewicht des Krans mit Werbeschild sowie weitere Windlasten können vernachlässigt werden.

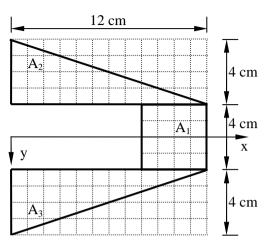
a) Berechnen Sie den äquivalenten Kraftwinder (A, M_P) der eingeprägten Kräfte bezüglich des Punktes P.

$$\mathbf{A} = \begin{pmatrix} & & & & \\ & & & & \\ & & & \\ & \mathbf{M}_{\mathrm{P}} = \begin{pmatrix} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

b) Wie lautet die Transformationsbeziehung für einen Wechsel des Bezugspunkts von P nach Q?

$$\mathbf{M}_{\mathsf{Q}} = \underline{} + \underline{} \times \underline{}$$

c) Berechnen Sie das Moment bezüglich des Punktes O.

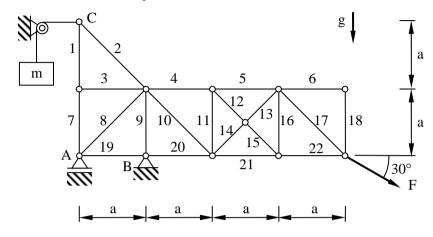

d) Was muss für den Kraftwinder aller Kräfte und Momente (\mathbf{A}_{res} , $\mathbf{M}_{P \text{ res}}$) eines Systems gelten, damit es im Gleichgewicht ist?

$$\left(\mathbf{A}_{\mathrm{ges}},\mathbf{M}_{\mathrm{P,ges}}\right) = \underline{}$$

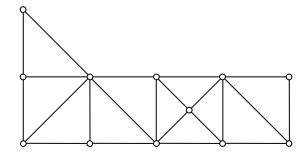
Aufgabe 3 (7 Punkte)

Es soll der Schwerpunkt $S(x_{ges}, y_{ges})$ eines Körpers mit konstanter Dicke und der dargestellten Querschnittsfläche bestimmt werden. Diese besteht aus einem Quadrat (Fläche A₁).

sowie zwei Dreiecken (Flächen A_2 und A_3).


- a) Konstruieren Sie die Schwerpunkte der Teilflächen und bezeichnen Sie diese mit S_1 , S_2 und S_3 .
- b) Wie lautet die Beziehung zur Berechnung der x Koordinate des Gesamtschwerpunkts x_{ges} aus den bekannten Teilflächen A_1 , A_2 und A_3 sowie deren Teilschwerpunktskoordinaten x₁ x₂ und x₃?

c) Berechnen Sie die Koordinaten des Gesamtschwerpunkts S und zeichnen Sie ihn ein.


 $x_{ges} =$, $y_{ges} =$

Aufgabe 4 (18 Punkte)

Untersuchen Sie das dargestellte Fachwerk.

- a) Welche Aussagen treffen zu?
 - □ das Fachwerk ist als Ganzes bestimmt gelagert
 - mit Starrkörpermechanik sind alle Stabkräfte bestimmbar
 - ☐ das Fachwerk ist abbrechbar
- das Fachwerk ist kinematisch bestimmt gelagert
- mit Starrkörpermechanik sind alle Lagerkräfte bestimmbar
- □ das Fachwerk ist einfach
- b) Schneiden Sie das Fachwerk frei und zeichnen Sie alle angreifenden Kräfte ein.

c) Stellen Sie die Gleichgewichtsbedingungen für das Fachwerk auf.

d) Berechnen Sie die Lagerkräfte.

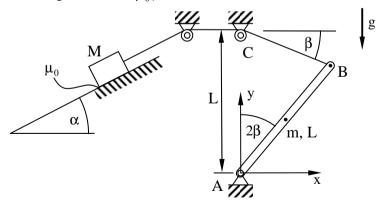
e) Geben Sie die Indizes der Nullstäbe an.

f) Zeichnen Sie alle am Knoten C angreifenden Kräfte in die Skizze ein und benennen Sie diese.

°C

g) Berechnen Sie die Stabkräfte der Stäbe 1 und 2.

- h) Zeichnen Sie einen Ritter-Schnitt und einen geeigneten Bezugspunkt P zur Berechnung der Stabkraft S_{20} in die Aufgabenskizze ein.
- i) Berechnen Sie die Stabkraft S₂₀.


S_{20}	=	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
----------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

j) Klassifizieren Sie die folgenden Stäbe.

	S_4	S_7	S ₂₂
Nullstab			
Zugstab			
Druckstab			

Aufgabe 5 (11 Punkte)

Eine Zugbrücke (Länge L, Masse m) wird von einem Seil gehalten. Dieses ist über zwei reibungsfreie Rollen mit einem Gegengewicht (Masse M) verbunden. Das Gegengewicht liegt auf einer unter dem Winkel α geneigten, rauen Ebene (Haftreibungskoeffizient μ_0).

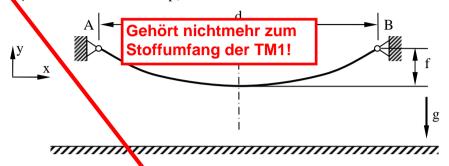
a) Berechnen Sie den Vektor \mathbf{r}_{AB} sowie die im Punkt B angreifende Seilkraft, deren Betrag S kann als gegeben angesehen werden.

b) Schneiden Sie das Gegengewicht frei.

c) Stellen Sie die Gleichgewichtsbedingungen für das Gegengewicht auf.

Aus dem Momentengleichgewicht der Brücke folgt die Seilkraft $S = mg \sin(\beta)$.

d) Wie lautet die Haftreibbedingung für das Gegengewicht?



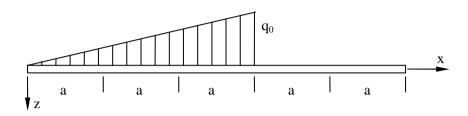
e) Ab welchem Winkel β_{krit} beginnt die Kiste nach rechts zu rutschen?

 $eta_{ ext{krit}} =$

Aufgabe 6 (8 Punkte)

Für einen Geburtstag soll eine Girlande zwischen zwei Wänden aufgehängt werden. Hierfür wird die Girlande als ideales, biegeweiches Seil modelliert. Die Aufhängepunkte A und B sind auf gleicher Höhe über dem Fußboden in einer Entfernung d angebracht. Die Horizontalkraft im Seil beträgt H₀, wobei das Seil eil spezifisches Gewicht von p₀ hat.

a) Geben Sie die Streck nlast eines Seils durch Eigengewicht an. Das Seil ist nicht straff gespannt.


b) Wie sieht die allgemeine Lösung der Differentialgleichung der Seilkurve aus?

- c) Zeichnen Sie das Koordinatensystem in die Skizze ein, so dass sämtliche Integrationskonstanten verschwinden und bemalen Sie dessen Position.
- d) Berechnen Sie den Durchhang f in der Mitte des Seiles für d = 6 m, $H_0 = 20 \text{ N}$, $p_0 = 1 \text{ N/m}$ und kreuzen Sie die richtige Lösung an.
 - $\Box 0.05(\cosh(60)-1)$ m
- $\Box 0.05(\cosh(60)+1)$ m

- \Box 0.05(cosh(60)) m
- \square 20(cosh(3/20) m
- \square 20(cosh(3/20)-1) m \square 20(cosh(3/20)+1 m
- e) Wie ändert sich die Seilkraft S_A im Punkt A, wenn nur dieser nach oben verschoben wird?
 - \square S_A wird kleiner
- \square S_A wird größer \square S_A bleibt gleich

Aufgabe 7 (11 Punkte)

Ein Balken ist durch noch nicht eingezeichnete Kräfte, sowie eine Streckenlast belastet, die an der Stelle x = 3a den Wert q_0 annimmt.

a) Beschreiben Sie die Streckenlast mit Hilfe von Klammerfunktionen.

b) Es ergeben sich folgende Verläufe für die Querkraft Q(x) und Normalkraft N(x). Zeichnen Sie die Reaktionskräfte und eingeprägten Kräfte in die Skizze ein.

$$Q(x) = -\int_{0}^{x} q(\overline{x}) d\overline{x} + F_{Az} - F\{x - 4a\}^{0} + F_{B}\{x - 5a\}^{0}$$

$$N(x) = -F_{Ax} + F\{x - 4a\}^0$$

c) Berechnen Sie den Momentenverlauf M(x).

M(x) =

d) Berechnen Sie die Reaktionskräfte F_{Ax} , F_{Az} und F_{B} für $q_{0} = F/(3a)$.

 $F_{Ax} =$, $F_{Az} =$, $F_{B} =$

