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Abstract. The algorithms to set up the equations of motion symbol-
ically for both rigid and elastic multibody systems are presented. In
the described program Neweul-M2 which is using the power of Matlab
and Maple, the modeling approach with commands and a graphical user
interface are discussed as well as an overview of possibilities for system
analysis, control design and optimization is given. A double pendulum
is modeled both with rigid and elastic bodies to explain the program
features.

Key words: Symbolic Equations of Motion, Elastic Multibody Systems,

Research Software, Matlab

1. Introduction

The generation of equations of motion for large multibody systems is a non-
trivial task requiring numerous steps during the evaluation of the fundamental
relations. Multibody system formalisms are founded on Lagrange’s equations
of the first or second kind, or the Newton-Euler equations and D’Alembert’s or
Jourdain’s principle, respectively, see e.g. Kane and Levinson [3], Lu [8] and
Schiehlen [10]. Regarding the computational procedure, numerical and symbol-
ical formalisms are distinguished. A numerical formalism provides the numbers
in the equations of motion required for each time step of the simulation program.
In contrary, symbolical formalisms generate the equations of motion only once
with a computer code as it would be done with paper and pencil. The advantage
is that different values of the system parameters can be inserted in the symbol-
ical equations of motion, but also the structure of the equations can be further
utilized. Symbolical formalisms are especially helpful for real-time simulations,
optimizations and control design, where the created equations can be used in a
flexible way by other programs, too.
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2. Neweul-M2: The Algorithm

The symbolical formalism Neweul-M2 is a research software based on the
Newton-Euler equations and the principles of d’Alembert and Jourdain. It gen-
erates equations of motion in minimal form for open-loop systems, and differen-
tial algebraic equations for systems with closed kinematic loops. These can be
solved by any integration code for ordinary differential or differential algebraic
equations, respectively. Due to the fact that Neweul-M2 is a research software
the user has full access to the complete source code. Thus, it is easier to identify
any problems arising in the modeling and simulation process and to adjust and
extend the functionality of the code.

The approach used will be briefly presented next, before explaining the soft-
ware in more detail. The formalism comprises four steps, see also Schiehlen and
Eberhard [11] and Popp and Schiehlen [9]. Here, the equations of motion for
an elastic multibody system shall be derived, where some bodies are flexible.
Flexibility is described in the system by a small elastic deformation overlayed
to a large, possibly nonlinear motion of the respective frame of reference, see
Schwertassek and Wallrapp [12].

Step 1 (rigid and flexible): System specification and data input.
At first, the multibody system is defined and parameters used for the entire sys-
tem have to be provided. The number of degrees of freedom is specified and the
f generalized coordinates yk are chosen. The inertial frame ISY S and the body
fixed frames are defined. For each of the pr rigid bodies Ki, the corresponding
position variables of the center of gravity {ri,Si} and inertia parameters {mi, Ii}
are specified. The pf flexible bodies can be modeled in a structural analysis soft-
ware of the user’s choice, most often a finite element program. There, e.g., a
modal analysis should be performed and the results are stored in the Standard

input data file (SID-file), see Schwertassek and Wallrapp [12]. This file is a stan-
dardized format to store a description of all elastic forces, inertia properties,
mode shapes, node positions and all other important information. During the
modeling in the finite element program the user has to decide the type of frame
of reference for this body. Here only the case of a frame of reference attached to
one node of the body shall be investigated, which results in a tangent orientation

to the deformed body. In Neweul-M2 applied forces and torques {f
(a)
i , l

(a)
i } can

be specified. But they are not defined explicitly by the user but are introduced
automatically by the program from the definition of force elements during the
modeling. These force elements can be attached to any coordinate system, e.g.
a node of an elastic body.

The following steps will be first described for the case of rigid bodies. Then
they will be presented for the case of elastic bodies and the differences will be
highlighted.

Step 2 (rigid): Element consideration, local equations.
First the elements of all vectors and inertia tensors are computed in the inertial
frame ISY S by applying appropriate tensor transformations. This is then the
only coordinate system further used for the description. The local equations of
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motion for the center of mass of each rigid body Ki read as

miv̇i = f
(a)
i + f

(r)
i , i = 1(1)pr , (1)

Ii · ω̇i + ω̃i · Ii · ωi = l
(a)
i + l

(r)
i , i = 1(1)pr , (2)

where vi and ωi denote the translational and rotational velocity, and the forces
and torques are subdivided in the applied forces and torques and the unknown

reaction forces and torques f
(r)
i , l

(r)
i . The reactions are eliminated later, and,

therefore, they do not have to be specified.
Step 3 (rigid): Relation between local and global quantities.

The relation between the pose (position ri, rotation matrix Si) of a single body
Ki, and the generalized coordinates, summarized in the vector y(t), is deter-
mined by the constraints. These poses are derived from the input data as

ri = ri(y, t) , Si = Si(y, t) , i = 1(1)pr , (3)

and the corresponding velocities vi, ωi with respect to the body’s center of mass
are computed as

vi = ṙi =
∂ri

∂y
· ẏ +

∂ri

∂t
= JTi(y, t) · ẏ + vi(y, t) , (4)

ωi = JRi(y, t) · ẏ + ωi(y, t) . (5)

For scleronomic constraints the local velocities vi, ωi disappear. The 3 × f -
Jacobian matrices JTi, JRi of translation and rotation, respectively, present the
relation between the local and global coordinates. The accelerations can be
obtained similarly

ai = v̇i = JTi(y, t) · ÿ + ai(ẏ,y, t) , (6)

αi = ω̇i = JRi(y, t) · ÿ + αi(ẏ,y, t) . (7)

After these preparatory computations the local Newton-Euler equations (1)
and (2) for each body Ki are expressed as functions of the generalized coordinates
and their derivatives.

Step 4 (rigid): System consideration, global equations.
Starting from the equations of motion of the single bodies those of the complete
system shall be obtained. For this, the local equations are stacked on each other,
which results in a 6pr vector equation. Then e.g. the global vector of generalized
applied forces has the form

q(a) =
[

f
(a)T
1 , l

(a)T
1 , . . . , f (a)T

pr

, l(a)T
pr

]T

. (8)

The global Newton-Euler equations are now represented as

M · J · ÿ + k = q(a) + q(r) . (9)
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These 6pr equations are reduced to the minimal number of f ordinary differential

equations by pre-multiplication with the f×6pr transposed Jacobian matrix J
T
,

J
T
· M · J · ÿ + J

T
· k = J

T
· q(a) , (10)

where the term J
T
·q(r) is vanishing due to d’Alembert’s principle. Summarizing

the matrix products, one gets the equations of motion

M(y, t) · ÿ(t) + k(y, ẏ, t) = q(y, ẏ, t) (11)

with the symmetric mass matrix M = J
T
· M · J, the vector of the generalized

Coriolis-, centrifugal and gyroscopic forces k = J
T
· k and the vector of the

generalized applied forces q = J
T
· q(a).

Step 2 (elastic): Element consideration, local equations.
For the frames of reference of each elastic body the velocities and accelerations
are set up in the same way as mentioned above. Then the elastic deformations
should be added to the expressions. The displacements and its derivatives as well
as the expressions defining the inertias are read from the SID-file, which has been
created before in a structural analysis software. Therefore, all these expressions
are formulated with respect to the frame of reference of this body and described
in its coordinate system. To be able to include all values together with forces
in one equation, all values have to be expressed in the same coordinate system.
Instead of transforming all deformations and forces resulting from the body’s
description to the inertial system, everything will be described in the frame of
reference of each respective body. This requires position vectors, applied forces
like gravity and so on to be transformed to the local coordinate system.

Because the frame of reference is located in one node and not in the center
of gravity anymore, the translational and rotational equations of motion, see
Eqs. (1) and (2), are not decoupled anymore but have to be written like

Mk ·







aabs,ref,k

αabs,ref,k

ÿelastic,k






= hg,k + hd,k − he,k − hω,k +







f
(r)
k

l
(r)
k

0






. (12)

This equation contains the mass matrix Mk, the vectors of generalized gravita-
tional hg,k, surface hd,k, elastic he,k and volume forces hω,k. The volume forces,
called hω,k, result from the fact that the equations of motion are not set up with
respect to the center of gravity but with respect to the frame of reference. The

reaction forces f
(r)
k and torques l

(r)
k vanish again after the multiplication with

the global Jacobian matrix as explained for the rigid bodies.
Step 3 (elastic): Relation between local and global quantities.

The absolute position vector of node i on elastic body k rabs,k,i can be com-
posed from the large nonlinear motion of the frame of reference rabs,ref,k, the
relative nodal position in the undeformed configuration rconst,k,i and the elastic
displacement uk,i as

rabs,k,i = rabs,ref,k + rconst,k,i + uk,i . (13)
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To approximate the elastic displacement a Ritz-approach is used to distinguish
between the time- and position-depedent part

uk,i(R, t) = Φk,i(R) · yelastic,k(t) . (14)

Here, the matrix Φk,i(R) represents the matrix of the Ansatz-functions, whereas
the vector yelastic,k(t) represents the elastic degrees of freedom of this body. All
elastic coordinates can be combined to form the global vector of elastic general-
ized coordinates yelastic. Therefore, the vector of the generalized coordinates of
the complete system has to be extended to

y =
[

yT
rigid yT

elastic

]T

. (15)

After introducing a similar matrix of Ansatz-functions for the rotations of each
node, the velocities and accelerations can be obtained as time derivatives. Sim-
ilar to the rigid bodies, the translational and rotational accelerations can be
written to contain the Jacobian matrix Jk of body k. As Eq. (12) contains all
motions and deformations coupled to each other it is reasonable to also stack
the Jacobian matrices of translation, rotation and elastic deformations

Jk =
[

JT
T,k,ref JT

R,k,ref JT
E,k,ref

]T

. (16)

Step 4 (elastic): System consideration, global equations.
For rigid bodies the equations of all bodies have been stacked in order to gain
one set of equations for the complete multibody system. This and the multipli-

cations with the transposed global Jacobian matrix J
T
, see Eq. (10), can also

be performed to get the equations of motion in minimal form, see Eq. (11),

M(y, t) · ÿ(t) + k(y, ẏ, t) = q(y, ẏ, t) . (17)

The force vectors of elastic he,k and volume forces hω,k as well as inertia forces
resulting from the local accelerations, compare Eq. (6) and (7), are sorted in the
k vector. This leaves all applied forces for the q vector.

The greatest formal difference in the presented steps for rigid and elastic
bodies is the coordinate system used to represent the vectors and matrices. For
rigid bodies the inertial system is used, whereas all expressions for elastic bodies
are described in their respective frame of reference. At first it sounds like a
strange concept to use different describing coordinate systems, but due to the
stacking of the equations for each body, this does not cause any problems but
results in the lowest number of transformations.

The presented four steps show that this symbolical formalism is based on the
Newton-Euler equations. However, they are supplemented by typical features
of the analytical approach like generalized coordinates. All necessary computa-
tions were performed symbolically in Neweul-M2 using Maple which is called via
Matlab’s Symbolic Math Toolbox.
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3. Software Tools

The program Neweul-M2 is running in the Matlab environment and using
Maple for the symbolic manipulations. Because these two powerful software
packages are used for the implementation, combining the advantages of symbol-
ical and numerical approaches, the program is called Neweul-M2.

Matlab offers a wide range of efficient tools for numeric simulations. It also
contains the Simulink environment used for signal flow simulations and control.
This makes it one of the most widely used scientific and engineering softwares.
To be able to calculate the governing equations of the multibody system sym-
bolically, a connection to a computer algebra software is required. Here, Maple
is used for the symbolic manipulations. For Neweul-M2 the interface by The
Mathworks, called Symbolic Math Toolbox is used, which internally connects to
a Maple kernel, although the user does hardly notice that he uses not ’pure’
Matlab. One advantage of keeping the user in the Matlab environment is the
recent change of the Symbolic Math Toolbox to use MuPad instead of Maple as
the computer algebra system which requires hardly any changes in the program.

Another goal of Neweul-M2 is to enable the user to use the models and results
for other simulations and applications. Due to their complexity, the simulation
of mechanical multibody systems, in general, has to be performed numerically,
where Matlab is the tool at hand. All kinematic values, like position or accel-
eration vectors, are calculated fully symbolic. All applied forces, equations of
motion and other necessary expressions are formulated fully symbolic as well.
When these calculations are finished, the results are stored in a Matlab data
structure for further symbolic manipulations. For the numerical evaluation of
the equations of motion and all kinematic quantities like position, velocities and
acceleration, automatically created source code in Matlab language is provided.
Moreover, the equations of motion can be exported as C-code to be used, e.g., as
a Simulink S-function, or directly on dSpace hardware for realtime applications.
For the evaluation of a numerical value then only these automatically created
functions are called. This dual system of having all expressions available symbol-
ically and numerically is a key feature of Neweul-M2 and allows both symbolic
manipulations and fast evaluations of numerical values.

In Matlab a tool to create graphical user interfaces is included. It offers the
possibility to easily design interfaces with programmable control elements, from
which arbitrary Matlab functions can be called. Using this, a graphical user
interface has been created acting as a front end to the routines of Neweul-M2.
As Neweul-M2 uses only standard software, which can be installed on different
operating systems, e.g. Windows or Linux, it is platform independent.

4. Multibody Dynamics by Neweul-M2

There are two ways in Neweul-M2 to model systems and perform simulations,
using the command-based mode or the graphical user interface, respectively. The
change between the two methods can be easily achieved by saving the model data
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structure created with one interface and opening it with the other interface.
To demonstrate the modeling process step by step, a simple double pendulum
consisting of rigid bodies will be considered first, see Fig. 1. In the next step the
two rigid bodies will be replaced by flexible ones.

alpha

phi

m, Ix

m, Ix

L2

L1

ISYS

y

z

Figure 1. Sketch of the double pendulum model.

4.1. Modeling rigid bodies with commands

In this part, the modeling of a multibody system using modeling commands is
described. These modeling commands can be entered directly into the command
prompt of Matlab, or can be collected in an input file. A detailed documentation
is maintained as a wiki, see Kurz and Henninger [6], and is available in a browser
or as an export to a pdf-file.

To define the model of a rigid double pendulum, the following commands are
necessary and will be explained in the following.

newSys(’Id’,’my_MBS’,’Name’,’Double Pendulum’);

newUserVarKonst(’m’,2,’L1’,1,’L2’,1,’Ix’,0.01);

newGenCoord(’alpha’,’phi’);

newBody(’Id’,’P1’,’Name’,’Pendulum 1’,’RefSys’,’ISYS’, ...

’RelPos’,’[0; 0; 0]’,’RelRot’,’[alpha; 0; 0]’, ...

’CgPos’,’[0; 0; -L1]’,’CgRot’,’[0; 0; 0]’, ...

’Mass’,’m’,’Inertia’,’[Ix,0,0; 0,1,0; 0,0,1]’);

newBody(’Id’,’P2’,’Name’,’Pendulum 2’,’RefSys’,’P1_cg’, ...

’RelPos’,’[0; 0; 0]’,’RelRot’,’[phi; 0; 0]’, ...

’CgPos’,’[0; 0; -L2]’,’CgRot’,’[0; 0; 0]’, ...

’Mass’,’m’,’Inertia’,’[Ix,0,0; 0,1,0; 0,0,1]’);

calcEqMotNonLin;

writeMbsNonLin;

Three points at the end of a line are used, when the command is continued in the
next line. When starting the modeling process in Neweul-M2, a new mechanical
system has to be created first by
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newSys(’Id’,’my_MBS’,’Name’,’Double Pendulum’);

In most cases the parameters of the modeling commands are given pairwise in
the Matlab-usual manner. The first parameter of the pair defines the parameter
type, the second is the parameter itself. By this convention the syntax is human-
readable and comprehensible, and the parameters can be specified in an arbitrary
order. For all parameters not specified, default values are taken. Here, we just
created a new data structure for a multibody system with the identifier my MBS

and the name Double Pendulum. For all modeling elements, substructures are
entered in this system data structure, where the respective identifier is used as
a fieldname.

As the modeling is done symbolically, four types of parameters are available,
constants, time- and state-dependent parameters and generalized coordinates.
The generalized coordinates are the unknowns in the equations of motion. When
creating a time dependent parameter, a function template to evaluate its value
and one for each of the first two derivatives with respect to time are created.
This allows the user to implement any suitable function for these values. The
state dependent parameters can be used in force elements or for the definition of
coordinate systems. For the state dependent parameters such function templates
are created as well which then should contain some additional information on
its derivatives, e.g. for the calculation of Jacobian matrices.

In our example, we first define the constant parameters. These are the pen-
dulum lengths L1, L2, the mass m and the moment of inertia Ix.

newUserVarKonst(’m’,2,’L1’,1,’L2’,1,’Ix’,0.01);

The numerical values are necessary in later steps, but can be set here already for
simplicity. To define a double pendulum, we then have to specify the generalized
coordinates with

newGenCoord(’alpha’,’phi’);

The program Neweul-M2 offers all common modeling elements of multibody
systems. The most basic ones are frames and bodies. When defining a new multi-
body system, the inertial system ISY S is created automatically. The position
of each frame is described with respect to an already existing frame, denoted as
reference system. Each rigid body is defined by at least two body-fixed frames,
which are created automatically. One of them is called the primary system of
this body and is used to describe the motion of the body, the other system defines
the location of the center of gravity, denoted by cg, and provides the coordinate
system for the description of the inertia tensor. Flexible bodies are described
by their frame of reference and the nodes. To describe the first pendulum some
informations are necessary:

• name and id to identify the body,

• position vector and orientation of the primary frame, often located in the
support,
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• relative position vector to the frame in the center of gravity and its relative
orientation, and

• mass and inertia properties.

As presented above, in Neweul-M2 these definitions read as

newBody(’Id’,’P1’,’Name’,’Pendulum 1’,’RefSys’,’ISYS’, ...

’RelPos’,’[0; 0; 0]’,’RelRot’,’[alpha; 0; 0]’, ...

’CgPos’,’[0; 0; -L1]’,’CgRot’,’[0; 0; 0]’, ...

’Mass’,’m’,’Inertia’,[Ix,0,0; 0,1,0; 0,0,1]);

The way a mechanical system is modeled in Neweul-M2 is different to most
commercial programs due to the symbolic approach. First one has to declare
variables of different types. Then the definition of bodies and frames is achieved
by the symbolic definition of the position vectors and rotation angles. The
generalized coordinates y specify the degrees of freedom, see Eq. (3). A list of
joints or constraints is not required. The reason for this is the way the system
is stored and the equations of motion are generated.

At this point in the simulation process, the user can specify other modeling
elements, like force elements or can close kinematic loops. The command syntax
is of the same style as when creating a new body. There are different types of
force elements available, spring-damper combinations as well as time dependent
force excitations. If kinematic loops are defined, the algebraic loop closing con-
ditions are calculated and used as algebraic constraints for the time integration.
The actual modeling is finished, if the user has entered all necessary information
to create the symbolic expressions, which can be done with

calcEqMotNonLin;

For all kinematic values and the equations of motion, the files containing source
code for their numerical evaluation are created by

writeMbsNonLin;

These files can then be used in external simulation programs or, as described in
the following, within Matlab. An animation window can be initialized to display
the positions of all frames, because numerical values for the constants have been
defined already

createAnimationWindow;

To set a certain initial time (t=0) and state (alpha=0.4, phi=1.5) for the posi-
tions in the animation window the following command can be used

updateGeo(0,[0.4;1.5]);

Simple geometrical shapes, e.g. spheres, cuboids or rotational solids can be
attached to the frames, see Legland [7]. In an animation these shapes move in
the same way their governing frames do, allowing representations of bodies, see
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Fig. 2. For more complicated shapes, it is also possible to import the geometry
by STL files, created e.g. in CAD applications. These shapes are only for the
animation, e.g. a calculation of moments of inertia is not included. Furthermore,
line elements connecting two frames or displaying the trajectory of a frame, e.g.
from a time integration, are available.

Figure 2. Model of a double pendulum including geometrical shapes of bodies and a

trajectory.

Shapes to represent bodies can be easily created, see Fig. 2. The vectors and
matrices of the equations of motion, compare Eq. (11), are stored in the data
structure under sys.eqm. For this example e.g. the mass matrix can be shown
using Matlab’s ’display()’ command

display(sys.eqm.M)

=

[ (2*L1^2+L2^2+2*L1*L2*cos(phi))*m+2*Ix, ...

m*L2^2+m*L1*L2*cos(phi)+Ix]

[ m*L2^2+m*L1*L2*cos(phi)+Ix, ...

m*L2^2+Ix]

Derivatives with respect to time of any variable are denoted in the symbols of
Maple by a leading D or D2, respectively, for the first or second derivative. Using
the equations of motion, several methods for simulation and system analysis
are available in Neweul-M2. Some of them are listed in the following. A time
integration can be easily performed after setting the initial conditions and the
time interval.

mytime = [0,10]; % Simulation time interval

y0 = [0.4;1.5]; % Initial values for positions
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Dy0 = [0;0]; % Initial values for velocities

timeInt(y0,Dy0,’time’,mytime); % Numerical time integration

fitCanvas; % Adjust visible area

plot_trajectories(’P2_cg’); % Plot trajectory of a frame

animTimeInt; % Start an animation

The percent sign ’%’ in Matlab is used to denote that the rest of this line con-
tains comments and explanations. Even though Neweul-M2 offers many settings
and possibilities to specify optional values, the user can just use the default val-
ues at first. Additional options and specifications can be passed in the pair-wise
manner explained at the definition of new bodies. In order to investigate the
corresponding linear model for small angles only, the equations of motion can
be linearized by

calcEqMotLin; % Linearize the equations of motion

writeMbsLin; % Create files for numerical evaluation

For the linearization, the expressions in the equations of motion are approx-
imated by a Taylor-series expansion where all second and higher order terms in
the generalized coordinates are neglected. Then the mass, damping and stiffness
matrices are obtained by appropriate sorting. As a default symbolical constants
are used for the set values of the linearization, but time dependent functions are
available as well. To perform a modal analysis at evaluation time t=0 type

modalAnalysis(0); % Calculate eigenvectors /-values

showModeShape; % Display mode shapes

Having the symbolic equations of motion, some tasks require very little work
by the user. So it takes only the two commands calcEqMotLin and writeMbsLin

to calculate the linearized equations of motion, once the model is described.

4.2. Modeling elastic bodies with commands

In the previous part it was shown how to model a rigid body double pen-
dulum with commands. Now the bodies shall be modelled considering their
elasticity. Therefore, it is necessary to model them, e.g. using an FEM pro-
gram. From this an SID file, compare Schwertassek and Wallrapp [12], contain-
ing all information of the elastic body can be created, let’s say this file is called
nodalfixed yz 4n 3m.SID FEM.

The structure modeled here is a beam extending from the origin of the co-
ordinate system 1 m in negative z-direction. Before creating the SID file it is
possible to select which nodes and which eigenmodes shall be included in the file.
Therefore, the user can use a higher number of elements for the modal analysis
than necessary for an animation later in Neweul-M2, also a modal reduction may
be performed at this step. For this example 10 elements have been used for the
modal analysis, whereas only 4 nodes and 3 mode shapes have been exported to
the SID file. Because all properties of the elastic bodies are stored as numerical
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data, the approach used is not fully symbolic anymore. It would be possible
but is not useful to introduce a symbolic parameter for each value from the SID
data.

The first commands are known from above to create a new multibody system
and define the generalized coordinates, as described before

newSys(’Id’,’my_MBS’,’Name’,’Flexible Double Pendulum’);

newGenCoord(’alpha’,’phi’);

The definition of the bodies changes when using flexible bodies. The position
of the center of gravity, all inertia properties, elastic degrees of freedom and
the positions of all nodes are stored in the SID file. In the structural analysis
program, the nodes can be given indices, which are included in the SID file.
Then the nodal coordinate systems are called by the Id of the elastic body with
the trailing nodal index, e.g. P1 2. Here the nodes at each end of the beam have
the indices 1 and 2, where nodal frame of node 1 is used as the frame of reference
for the body.

newBody(’Id’,’P1’,’Name’,’Pendulum 1’,’RefSys’,’ISYS’, ...

’RelPos’,’[0; 0; 0]’,’RelRot’,’[alpha; 0; 0]’, ...

’SIDfile’,’nodalfixed_yz_4n_3m.SID_FEM’);

newBody(’Id’,’P2’,’Name’,’Pendulum 2’,’RefSys’,’P1_2’, ...

’RelPos’,’[0; 0; 0]’,’RelRot’,’[phi; 0; 0]’, ...

’SIDfile’,’nodalfixed_yz_4n_3m.SID_FEM’);

The elastic degrees of freedom are generated automatically when read from
the SID file and called here q01 up to q06. For better readability the vector
of generalized coordinates is sorted to have the generalized coordinates of rigid
body motions on top of the elastic degrees of freedom, as in Eq. (15). At this
point of the simulation the user can call the same commands as above, noting
only that e.g. there is no coordinate system in the center of gravity available and
the number of degrees of freedom has changed. To include graphical represen-
tations for flexible bodies the most useful representation is a line connecting all
coordinate systems, see Fig. 3.

The presented double pendulum has been compared to simulations performed
by Simpack. Very good accordance between both results has been observed.

4.3. Modeling with the graphical user interface

A graphical user interface available for Neweul-M2 was created with the tools
provided by Matlab. It offers a different way of accessing the modeling com-
mands, but does not offer additional capabilities.

As only feasible choices are offered in the menus, the possibility of input
errors is reduced. Also, this kind of modeling offers more guidance, e.g. by help
buttons in each window, see Fig. 4, where the properties of the rigid body P2

of our example are shown. The options at the lower left corner concerning a so
called Joint System are in an experimental state.
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Figure 3. Model of an elastic double pendulum including lines representing the bodies.

4.4. Some features of the program Neweul-M2

As all expressions are derived fully symbolic and are stored as such and in
files for numerical evaluation, they offer a wide range of uses like the system
analysis options of Matlab. The equations of motion can, e.g., be numerically
integrated to animate the motion. By prescribing given functions to generalized
coordinates, a kinematic analysis is easily possible. This is especially important
to investigate reachable work spaces or special configurations. For any given set
of values for the generalized coordinates and their derivatives, the prescribed
functions can be used to calculate kinematic values like positions, orientations,
or accelerations.

The nonlinear equations of motion can be linearized for symbolic set values.
This enables, e.g., a linear analysis of the small motion around a prescribed
trajectory. After the definition of system input and output variables, transfer
functions can be determined. In the context of system theory with input and
output variables, the possibility to export the equations of motion to Simulink
is another interesting feature. Both, the linear and the nonlinear equations of
motion can be exported to C-code that can be used as S-functions in Simulink.
The linearized system can also be used to perform a modal analysis. For the
linearized system, the state space formulation is also available, providing the
(A, B, C, D)-matrices, as required in control engineering.

For parameter optimization of design variables the symbolic expressions offer
even more advantages. To improve the performance of deterministic optimiza-
tion algorithms, the calculation of gradients is crucial. Especially for multibody
systems, which show usually a highly nonlinear behavior, the fast calculation
of precise gradients is very important. The symbolic expressions can be used
to apply semi-analytical methods, namely the direct method and the adjoint
variable method, see Bestle [1], Eberhard [2] and Kurz [5]. These methods use
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Figure 4. Graphical user interface to define a body, here editing the flexible body

’Pendulum 2’.

symbolic expressions wherever possible, only when the calculation depends on
the results of the time integration of the equations of motion, a numerical so-
lution is used. They are often not only faster than numerical methods, like
the finite difference method, their precision is much higher as well. For sim-
ple problems, where an analytical calculation of the gradient is possible, these
methods reach precisions in the same order as the corresponding numerical time
integration. These gradients can also be calculated directly in Neweul-M2 for a
sensitivity analysis. Apart from the standard modeling presented, Neweul-M2

offers a broad spectrum of analysis and synthesis tools based on Matlab.

5. Conclusions

The symbolical multibody software Neweul-M2 offers a convenient descrip-
tion of the dynamical properties of a multibody system. The equations of motion
in minimal form are obtained by considering the constraints in the assembled
system depending on the generalized coordinates. The system modeling may
be performed from the command line and/or using a graphical user interface.
Using the Maple based Symbolic Math Toolbox of Matlab, the symbolical equa-
tions of motion are obtained as well as the corresponding files for numerical
computations using the vast mathematical features of Matlab. In particular the
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equations of motion may be linearized and used in Simulink or for control design
within the Matlab environment. Some features are presented for both a rigid
body and an elastic double pendulum. The implementation of flexible bodies in
a multibody system combining symbolic and numeric approaches will be used
for further research work in the areas of optimization and model reduction.

Acknowledgments

We want to thank Dr.-Ing. Christoph Henninger who started this project and
made very valuable contributions. Our thank also goes to Prof. Werner Schiehlen
for his advice and the development of the preceding version of Neweul, which
provided the basis for this program. This research was partially done within the
framework of SimTech, the Stuttgart Research Centre for Simulation Technology.
All this support is gratefully appreciated.

References

[1] Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. [in German],
Springer, Berlin, 1994

[2] Eberhard, P.: Zur Optimierung von Mehrkörpersystemen. [in German], Disserta-
tion, VDI Fortschritt-Berichte, Reihe 11, Nr. 227. VDI Verlag, Düsseldorf, 1996

[3] Kane, T.R. and Levinson, D.A.: Dynamics: Theory and Applications. McGraw-
Hill, New York, 1985

[4] Kreuzer, E.: Symbolische Berechnung der Bewegungsgleichungen von Mehrkörper-
systemen. [in German], Dissertation, VDI Fortschritt-Berichte, Reihe 11, Nr. 32,
VDI-Verlag, Düsseldorf, 1979

[5] Kurz, T.: Entwicklung eines Optimierungsmoduls mit Sensitivitätsanalyse für die

symbolische Mehrkörpersimulationsumgebung SYMBS. [in German], Diplomarbeit
DIPL-122. Institute of Engineering and Computational Mechanics, University of
Stuttgart, 2007

[6] Kurz, T. and Henninger, C.: Program documentation to Neweul-M2. Institute of
Engineering and Computational Mechanics, University of Stuttgart, 2009

[7] Legland, D.: Graphics Library geom3d. http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=8002 &objectType=file, 2005

[8] Lu, X.: A Lie Group Formulation of Kane’s equations for multibody systems.
Multibody System Dynamics 20, 29-50, 2008

[9] Popp, K. and Schiehlen, W.: Fahrzeugdynamik. [in German], B.G. Teubner,
Stuttgart, 1993

[10] Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin, 1990

[11] Schiehlen, W. and Eberhard, P.: Technische Dynamik. [in German], B.G. Teubner,
Wiesbaden, 2004

[12] Schwertassek, R. and Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. [in
German], Friedr. Vieweg & Sohn, Braunschweig, 1999


