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Abstract Flexible robots can be modeled as underactuated multi-
body systems since they generally have less control inputs than de-
grees of freedom for rigid body motion and deformation. The flexi-
bilities must be taken into account in the control design. In order to
obtain high performance in the end-effector trajectory tracking, an
accurate and efficient nonlinear controller is required. In this paper,
a nonlinear feedback controller based on the feedback linearization
approach using all the states of the system is designed and carefully
tested on a very flexible parallel lambda robot. The simulation and
experimental results show that the end-effector tracks a trajectory
with higher accuracy compared to previous works.

1 Introduction

Light-weight manipulators attract a lot of research interest because of their
complementing advantages. The advantages of light-weight robots include
low energy usage, less mass, and often high working speeds. However, due
to the light-weight design, the bodies have a significant flexibility which
yields undesired deformations and vibrations. Therefore, the manipulators
are modeled as a flexible multibody system and the flexibilities must be
taken into account in the control design. The flexible system with signif-
icant deformations complicates the control design because there are more
generalized coordinates than control inputs. In order to obtain a high per-
formance in the end-effector trajectory tracking of a flexible manipulator,
an accurate and efficient model and nonlinear controller is necessary. The
difficulty of designing a nonlinear feedback controller with high performance



for a highly flexible system is increased, when the controller does not have
access to direct measurement of the end-effector and all the system states.
To overcome this problem, an observer to estimate all the system states and
end-effector position is required. Finally, based on the estimated states of
the system, a nonlinear feedback controller can be designed.

In previous works on the lambda robot, the feedback controllers just used
the measurable states of the system, e.g. the position and velocity of the
actuators and the deformation of the flexible link. Using these outputs, a
linear controller was designed for the position and velocity of the actuators,
see Burkhardt et al. (2014). Also, an additional gain scheduling for the
linear controller of the actuators and a curvature controller based on the
strain of the flexible link were designed by Morlock et al. (2016).

The novelty of this work is, that a nonlinear feedback controller for high-
speed trajectory tracking of a very flexible parallel lambda robot is designed
based on the feedback linearization approach and all the estimated states
by the nonlinear observer. Hence, a nonlinear observer to estimate all the
states is used, see Ansarieshlaghi and Eberhard (2017), to make nonlinear
feedback control possible. Then, a feedback linearization control approach,
see Khalil (2002), is utilized to track a trajectory by the flexible robot in
real-time.

The nonlinear feedback controller using the nonlinear observer is sim-
ulated and carefully tested on the lambda robot hardware. Experimental
and simulation results of the designed feedback linearization controller on
the lambda robot show that the end-effector tracks a trajectory with high
accuracy and the tracking performance is drastically improved compared to
previous works, see Morlock et al. (2016).

The paper is organized as follows: Section 2 includes the modeling of
the flexible parallel lambda robot. Section 3 includes the description of the
nonlinear control, i.e. the feedforward controller, nonlinear observer, and
feedback controller. In Section 4, the proposed nonlinear controller is tested
on the simulated model and the hardware and the results are discussed.

2 Flexible Lambda Robot Modelling

The used lambda robot has highly flexible links. The end of the short link
is connected in the middle of the long link using rigid bodies. This robot
has two prismatic actuators connecting the links to the ground. The links
are connected using passive revolute joints to the linear actuators. Another
revolute joint is used to connect the short link and the middle of the long
link. An additional rigid body is attached to the free end of the long link
as an end-effector. The drive positions and velocities are measured with



optical encoders. Three full Wheatstone bridge strain gauges are attached
to measure the deformation of the flexible long link. The lambda robot
configuration shown in Figure 1a has been built in hardware, see Burkhardt
et al. (2014), at the Institute of Engineering and Computational Mechanics
of the University of Stuttgart.

(a) Hardware of lambda robot (b) Model of lambda robot

Figure 1: Lambda robot

The modeling process of the flexible manipulator with A configuration
can be separated into three major steps. First, the flexible components of
the system are modeled separately with the linear finite element method in
the commercial finite element code ANSYS. Next, in order to control the
A robot, the deformation degrees of freedom of the flexible bodies shall be
decreased and thus model order reduction is utilized. Then, all the rigid and
flexible parts are combined to a flexible multibody system with a kinematic
loop.

The equation of motion with a kinematic loop constraint for the flexible
parallel manipulator, using the generalized coordinates q € R® is

M(q)d +k(q.q) = g(q.4) + B(@)u + CT(q)X, (1a)
c(q)=0. (1b)

The symmetric, positive definite mass matrix M € R°*® depends on
the joint positions, angles, and the elastic coordinate. The vector k € R®
contains the generalized centrifugal, Coriolis and Euler forces, and g €
RS includes the vector of applied forces and inner forces due to the body
elasticity. The input matrix B € R%*2 maps the input vector u € R? to
the system. The constraint equations are defined by ¢ € R?. The Jacobian
matrix of the constraint C = 9 (c(q))/dq € R?**® maps the reaction force
A € R? due to the kinematic loop. The mechanical model of the flexible
lambda robot is shown in Figure 1b. The robot is modeled with four rigid



degrees of freedom that is shown in in Figure 1b, and one elastic coordinate
as ge.

3 Nonlinear Controller

The lambda robot control strategy is separated into feedforward and feed-
back control parts. In the feedforward control part, the desired trajectories
for system states are calculated from a two-point boundary value problem
offline while the flexible multibody system is a non-minimum phase system
with internal dynamics. The results of the feedforward part are the desired
values for the feedback control part. The real-time control part is divided
into a nonlinear observer to estimate all the system states and a feedback
linearization controller of the lambda robot. Figure 2 shows the nonlinear
controller structure of the lambda robot.
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Figure 2: Control block diagram

3.1 Feedforward Controller

The feedforward controller is obtained by solving a two-point bound-
ary value problem for the exact model inversion of the complete dynamical
model of the multibody system. To force the end-effector to track a tra-
jectory, an additional constraint equation, the so-called servo constraint,
see Blajer and Kolodziejezyk (2004), is augmented to the equation of mo-
tion (1). The equation of motion with the new servo constraint can be
written as

M(q)d +k(q.4) = g(q.4) + B(q)u + CT (@)X, (2a)
c(q) =0, (2b)
s(tq)=0. (20)

The solution of the boundary value problem is computed in Matlab using
the solver bupsc. The set values of the dependent coordinates, the indepen-
dent coordinates, the inputs of the system, and the Lagrange multipliers



are obtained from the constraint equations on the position, velocity, and
acceleration level.

3.2 Nonlinear Observer

A nonlinear high gain observer for the lambda robot was designed to
estimate the states and the end-effector position, see Ansarieshlaghi and
Eberhard (2017). For state estimation, the dynamics description of the
lambda robot in state space form Equation (la) can be written as

i — [2] _ B] = Az + f(x), (3a)
y=Wax=I[s1 s2 $1 5 ¢, (3b)

where y are the system outputs, A is a constant matrix, and f(x) is a
nonlinear function that are defined as follows

Os5x5 Isxs
A= |:05><5 05><5:| ’ (4a)
£@) = [y ’ (ab)
MY (z)(—k(z) + g(z) + CT(z)X + B(z)u)
State estimation is done for the system in Equation (3) using a high gain
observer approach for the nonlinear system, see Primbs (1996) or Khalil
(2008). The dynamics of the proposed observer is formulated as

&
I

Az + f(2) + L(g — y), (5a)
W, (5b)

Y

where & and g are the estimated states and outputs of the observed system,
respectively. Therefore, the observer gain L € R'9%® shall be designed
such that the estimated states converge to the real system states. The
observation error is calculated with the real system states in Equation (3)
and the estimated states from the observer in Equation (5) as e = & — .

Using the Lyapunov function and the Lipschitz condition one can show
that the estimation error converges to zero. That means that the estimated
states converge to the real system measurements. The values & and E, are
outputs of the nonlinear observer, i.e. the estimated states and end-effector
positions. The estimated states are fed to the feedback controller part in
order to calculate the input using a feedback linearization approach.



3.3 Feedback Linearization Controller

In order to design a nonlinear feedback controller for the system in Equa-
tion (1a), the system dynamics can be written in state space as

0 {0 Is><5] -

0 0
0
+ { M (@)(~k(@) + g() + CT(@)A) + M_'(@)B(@)u |, (6a)
yp = h(z) = [zj : (6b)

where yy € R? is the output of the lambda robot and the loop closing
constrained must be obeyed. The vector h € R? is a function of the sys-
tem states. For input-output linearization, only two outputs of the lambda
robot such as the actuator positions are used. The feedback linearization
controller cancels the nonlinear part of the robot dynamics using the es-
timated states by a nonlinear observer and then it controls the linearized
system by a linear controller. The control law is then obtained for the
lambda robot using the estimated states as

u =P~ (2)(v - b(@)). (7)

The linear part of controller v € R? is used for the linearized system.
The matrix P € R? is the decoupling matrix, and b € R? is the vector of
the nonlinear part of the dynamics. In the linear part of the controller, a
P1I controller for position and a PI controller for velocity are designed. The
matrix P and vector b are nonlinear functions of the system states

LI () LeIp (@] (L)
P@) = Lo @) Lol ha(w)” °@) = |Lhhy@)] - @

Here, L, is the Lie derivative respect to the matrix G and L7~ is the
Lie derivative respect to the vector n with relative degree r;1 — 1. For the
lambda robot, the relative degree of the system outputs is r| = ro = 2.

4 Simulation and Experimental Results

To validate the designed nonlinear feedback controller, the end-effector
tracks a line trajectory and a camera records a movie during the trajec-
tory tracking. The recorded movie is used for offline validation.



Figure 3 shows the simulation and experimental results of the designed
nonlinear feedback controller and its comparison to the gain scheduling
controller that was presented in Morlock et al. (2016).
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Figure 3: Simulation and experimental results for tracking a line trajectory
using a feedback linearization controller (f1) and a gain-scheduling controller

(gs)-

The simulation and experimental results in Figure 3 show that the de-
signed feedback linearization controller tracks the trajectory with high ac-
curacy. The presented nonlinear controller based on the model and using
the nonlinear observer in Ansarieshlaghi and Eberhard (2017) reduces the
trajectory tracking error about 76% and the end-point error about 90% in
simulation and experimental tests that are shown in Figures 3a and 3c. On
the other hand, the oscillation amplitude in simulation and experiment is
decreased about 79% as shown in Figures 3b and 3d.

Conclusion

In this paper, a nonlinear feedback controller was designed and applied
experimentally to a very flexible multibody system. The feedback lineariza-
tion controller obtains the system inputs based on the estimated states by



the nonlinear observer. The feedback linearization controller cancels the
nonlinear part of the system dynamics using the estimated states and then
controls the linearized system with a linear controller. The experimental
results for the very flexible parallel robot show that the feedback controller
successfully tracks the desired trajectory with high accuracy. Experimen-
tal validation results demonstrate that the tracking error and oscillation
amplitude drastically decrease compared to the gain scheduling approach.
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