
MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference
J.C. Samin, P. Fisette (eds.)

Brussels, Belgium, 4-7 July 2011

SYSTEMS WITH CONSTRAINT EQUATIONS IN THE SYMBOLIC
MULTIBODY SIMULATION SOFTWARE NEWEUL-M 2

Thomas Kurz, Markus Burkhardt, Peter Eberhard

Institute of Engineering and Computational Mechanics
University of Stuttgart

Pfaffenwaldring 9, 70569 Stuttgart, Germany
e-mail:thomas.kurz@itm.uni-stuttgart.de,
markus.burkhardt@itm.uni-stuttgart.de,
peter.eberhard@itm.uni-stuttgart.de

www.itm.uni-stuttgart.de

Keywords: Symbolic Multibody Systems, Kinematic Constraints, Differential Algebraic Equa-
tions.

Abstract. The research software Neweul-M2 can be used to set up the equations of motion for
rigid or elastic mechanical multibody systems symbolically. Depending on the structure of the
system, this results in ordinary differential equations or systems of equations with additional
algebraic constraint equations. These differential algebraic equations can either be solved di-
rectly or reformulated to improve the behavior during a time integration. Here, several different
formulations are presented and compared.

1

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

1 Introduction

Symbolic equations are desirable for a number of engineering applications. They are prefer-
able for real-time applications and uses, where the system shall not only be integrated over
the time. This includes optimization, control design, or applications where their easy export to
other simulation environments is very useful. On the other hand, symbolic modeling of me-
chanical systems always has to fight against problems arising from the complexity of systems,
which usually can be handled easier by numerical algorithms. Here, possibilities to formulate
systems with kinematic loops shall be presented and investigated. Such systems are common
in many technical applications, but at first result in differential algebraic equations, and not in
ordinary differential equations which are easier to handle. After an overview over the research
software Neweul-M2 the equations are set up and possible formulations are shown, which are
then investigated and compared for a slider crank mechanism.

2 Neweul-M2: A Research Software

The symbolical formalism Neweul-M2 is a research software for the modeling, analysis and
simulation of multibody systems, see [1]. It is based on the Newton-Euler equations and the
principles of d’Alembert and Jourdain, see [2] and [3]. Neweul-M2 is implemented in Mat-
lab calling Maple or MuPad, whichever is present, through the Symbolic Math Toolbox for
the symbolic manipulations. The system description is stored in a data structure containing all
kinematic values and other necessary symbolic expressions. For the numerical evaluation, files
in the Matlab language are written automatically, which then can also be used for other appli-
cations. The equations of motion, e.g., can be solved by any integration code for ordinary or
differential algebraic equations, respectively. As all expressions are available symbolically, they
can easily be exported to another programming language. From the expressions, e.g. Simulink
S-functions in C can be created automatically. Most commercial programs use solely numerical
algorithms for the modeling and simulation of multibody systems. Then, the modeling can be
based on catalogues, e.g., of constraints or force elements, and a time integration is easily pos-
sible even for complex systems. However, it is advantageousfor many applications to obtain
a symbolical formulation, which shall be shortly discussedin the following. When a system is
modeled symbolically, the describing kinematic values like velocity and acceleration, as well
as the equations of motion are expressed depending on user-defined variables. Those variables
are read from the input data and used to obtain all necessary quantities. After the kinematic val-
ues and equations of motion have been derived only once, theycan be used for fast numerical
evaluations. Since the expressions are set up prior to the numerical simulations, those evalua-
tions are very fast, allowing real-time applications. Whenperforming a parameter optimization
of nonlinear equations, the fast calculation of gradients with a high accuracy is crucial. The
symbolic system formulation can be used in the calculation of these gradients in analytical or
semi-analytical formalisms, depending on the optimization criteria. When the criterion func-
tion depends on a numerical time integration of the equations of motion, these semi-analytical
gradients reach an accuracy in the same order of error as the time integration involved, and can
be obtained fully automatic. Also when a controller is to be designed, the symbolical expres-
sions allow more possibilities and strategies than mere numerical algorithms, see [4]. In the
following, some recent developments shall be presented after the basics have been summarized.

2

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

3 Systems with tree structure

The software Neweul-M2 uses the Newton-Euler equations, which are conveniently set up in
the respective frame of reference of each body, see [5]. For systems with tree structure, this can
be easily done. A system has a tree structure as long as every coordinate system and body has
clearly only one frame of reference with respect to which it has been defined, see Fig. 1.

ISY S ISY S

Figure 1: Difference between systems with tree or loop structure.

Here, usually the constraint equations are not explicitly formulated but are contained in the
possible motion of the coordinate systems. By a premultiplication with the transposed global
Jacobian matrixJ, the equations of motion can be obtained

JT · M · J · ÿ + JT · qc = JT · qa + JT · Q · λ . (1)

Here the generalized coordinates are denoted byy andM is the global mass matrix of the
Newton-Euler equations. The forces are split up inqc which contains local accelerations and
will result in generalized Coriolis, centrifugal and gyroscopic forces,qa are the applied forces
andλ are the reaction forces, together with the distribution matrix Q. As this premultiplication
eliminates the reaction forces, the following abbreviations can be introduced for the equations
in minimal form, where all generalized coordinates are independent

M · ÿ + k = q . (2)

Here, the generalized applied forces are collected in the vector q, the generalized centrifugal,
Coriolis and gyroscopic forces are in the vectork, whileM is the minimal mass matrix.

4 Systems with kinematic loops

When additional algebraic constraint equations are introduced, they are commonly added to
the system of equations together with Lagrangian multipliers, resulting in a set of Differential
Algebraic Equations (DAE).

4.1 Differential Algebraic Equations

A set of Differential Algebraic Equations (DAE) is obtainedby adding the constraint equa-
tionsc = 0 or one of its time derivatives to the existing Ordinary Differential Equations (ODE),

3

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

see Eq. (2)

M · ÿ + k = q + CT · λ (3)

c̈(t,y, ẏ) = 0 . (4)

Here the generalized coordinatesy are no longer all independent, but due to the constraint
equations they depend on each other. There exist many integration algorithms to solve such
kind of systems. However, most of them require the constraint equations to be formulated on
acceleration level. This means, that the integration algorithm performs a root search in every
step to fulfill the constraint equations within the given tolerances. However, the velocity and
position level constraints are not completely satisfied dueto integration errors, which is the
so called drift error. This means that one criterion to compare the different formulations of
systems which started as DAE-systems is the drift behavior.Of course the computational effort
necessary to solve the equations is another criterion.

Starting from the constraint equations on position level

c(t,y) = 0 , (5)

we can obtain the constraint equations on velocity and acceleration level

ċ(t,y, ẏ) =
∂c

∂y
· ẏ +

∂c

∂t
= C · ẏ + b′ = 0 (6)

c̈(t,y, ẏ, ÿ) = C · ÿ + Ċ · ẏ +
db′

dt
= C · ÿ + b′′ = 0 . (7)

Usually the equations of motion are formulated using the constraint equations on acceleration
level c̈, which then can be written in matrix notation as

[
M CT

C 0

]
·
[

ÿ
−λ

]
=

[
q− k
−b′′

]
. (8)

The additional constraint equations provide another difficulty. The user has to specify gen-
eralized coordinates and corresponding constraint equations. While it is quite easy to formulate
them reasonably for the initial configuration, it may be quite difficult in the whole coordinate
space. It may happen that two or more of the constraint equations become linearly dependent.
This means that the system has a singular configuration in which the equations may not be solv-
able. The system can reach these configurations, just the choice of generalized coordinates will
be not suitable for the description.

Since many integration algorithms require the matrix on theleft hand side to be constant,
the Eq. (8) is not suitable. Also, many standard integrationalgorithms require a state-space
representation of the equations of motion, two possibilities for this are implemented in Neweul-
M2. The first is an explicit formulation




I 0 0
0 I 0
0 0 0


 ·




ẏ
ÿ

λ̇


 =




ẏ
M−1 · (q− k + CT · λ)

c̈


 . (9)

The second available formulation is an implicit formulation



I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0


 ·




ẏ
ÿ...
y

λ̇


 =




ẏ
ÿ

M · ÿ + k− q− CT · λ
c̈


 . (10)

4

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

The naming comes from the formulation of the actual equations of motion as the part due to
the state space formulation is always explicit and the constraint equations always implicit in
Neweul-M2. The main difference is that the first formulation requires either the mass matrix
M to be inverted, or usually the corresponding system of equations to be solved. This is done
implicitly in the second formulation by a root search. However, this comes at the expense of a
larger state vector.

The DAE formulation is usually a good way to simulate the system as long as the system
does not reach singular configurations, see [6]. Then it is quite unpredictable what will happen.
Therefore, it is interesting to investigate other possibilities to satisfy the algebraic constraints in
the equations.

4.2 Separation of coordinates, basic algorithm

Let us for now assume that the system does not reach a singularposition. Then the problem
is, to make a good choice of independent coordinatesyi among all available generalized coor-
dinatesy. As soon as this choice is made, it is possible to solve for alldependent coordinates
yd and use these values in the equations of motion. It is usuallyimpossible to do such a solution
symbolically and insert it into the equations of motion because of several possible solutions of
the constraint equations and required information to attain such a step. However, we will later
refine this algorithm so that it can be applied generally.

Starting from the constraint equations (5-7), let us separate the generalized coordinatesy
into independentyi and dependent coordinatesyd. When using variational calculus and also
separating the Jacobian matrix of the constraintsC we get

[
Ci Cd

]
·
[

δyi

δyd

]
= 0 . (11)

This means that the variation of the generalized coordinates has to respect the constraint equa-
tions, but by solving this for the dependent variations we can rewrite this equation and obtain

δy =

[
δyi

δyd

]
=

[
I

−C−1
d · Ci

]
· δyi = Ji · δyi . (12)

With this, we can rewrite the constraint equations on velocity level, Eq. (6), to

Ci · ẏi + Cd · ẏd + b′ = 0 , (13)

or

ẏ =

[
ẏi

ẏd

]
=

[
I

−C−1
d · Ci

]
· ẏi +

[
0

−C−1
d · b′

]
= Ji · ẏi + θ . (14)

Similarly with Eq. (7) on acceleration level it follows

ÿ =

[
ÿi

ÿd

]
=

[
I

−C−1
d · Ci

]
· ÿi +

[
0

−C−1
d · b′′

]
= Ji · ÿi + γ . (15)

Here again, the matrixJi appears, which can be used to transform the equations of motion into
the space of the independent generalized coordinates

JT
i · M · Ji · ÿi + JT

i · k + JT
i · M · γ = JT

i · q . (16)

5

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

To write these equations of motion in state-space form, the constraint equations on velocity
level, Eq. (14), and the part of the dependent accelerationsof Eq. (15) can be combined with
the equations of motion solved for the independent accelerations, Eq. (16), to obtain

[
ẏi

ẏd

]
=

[
I

−C−1
d · Ci

]
· ẏi +

[
0

−C−1
d · b′

]
(17)

[
ÿi

ÿd

]
=

[(
JT

i ·M · Ji

)−1 ·
(
JT

i · q − JT
i · k− JT

i · M · γ
)

−C−1
d · Ci · ÿi − C−1

d · b′′

]
(18)

In the last line, the independent acccelerationsÿi are contained. It looks strange to have those
variables on the right hand side of the equation, but as the evaluation goes from top to bottom,
the just calculated results can be used. This formulation has the advantage to use the constraint
equations to obtain the matrixJi with which the equations of motion can be transformed to
minimal form. As we used the constraint equations on acceleration level, we could not make
an improvement concerning the drift effect. As we have a manual selection of the independent
coordinates, this does not solve any problem with singularities. Here they appear as problems
in the inversion of the dependent part of the constraint Jacobian matrixCd.

4.3 Improvements to the basic algorithm

As we just saw, there are still some open issues in this formulation. We can address them in
several steps. At first, it is very useful to use indexing of vectors and matrices, which can be
done very conveniently in Matlab. This allows us to switch from the stacking of independent
coordinates on top of the dependent ones to an elementwise identification. It improves this
method as it allows us to smoothly exchange the coordinates which we consider as independent
if their choice becomes troublesome. This means, we could formulate a transformation matrix
T to choose the independent and dependent vectors

[
yi

yd

]
= T · y . (19)

Here this matrix would simply contain ones or zeros to selectcoordinates. However, if we
can find a suitable matrixT, we can use the best linear combinations ofy as independent
coordinates. Such a formulation was described in [7]. The use of such a transformation matrix
has two possible conclusions. Either we consider the matrixT to be constant and update it only
upon violation of some criterion. Then, the choice of coordinates is not optimal, but it is easy
to implement. If we want to determine such a matrix in every time step, Leister and Bestle [7]
had to rewrite the integration algorithm, which is also no really satisfying solution.

To evaluate the equations of motion we want to transform the generalized coordinatesy on
a minimal formulationyi, which consists of the optimal linear combinations of all generalized
coordinates. This happens inside the function called by theintegration algorithm, as described
in the following scheme.

So we can conclude the following steps

• The integration algorithm calls the m-file function and passes the complete vector of
generalized coordinatesy

– Calculate the transformation matrixT, which describes the optimal linear combina-
tion of generalized coordinatesyi and the corresponding dependent coordinatesyd

6

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

– Transform the generalized coordinates and all expressionsinto the space of minimal
coordinatesyi

– Evaluate the equations of motion in minimal form foryi

– Evaluate the constraint equations to obtain values for the dependent coordinatesyd

– Perform back transformation so the generalized coordinates y can be passed back
to the integrator

• Prepare the next integration step

It is the advantage of the algorithm which was just explained, that we always get the optimal
linear combination of generalized coordinates to describethe system in this time step. As
the integration algorithm is always considering the same, full state vector we don’t have any
problems with additional derivatives of the transformation. Therefore, we can now investigate
how to find this optimal linear combination.

4.4 Optimal linear combination of generalized coordinates

As the generalized coordinates have to fulfill the constraint equations, it is useful to imag-
ine valid directions for the generalized coordinates and orthogonal to them the reaction forces
caused by the constraints. This results in a depiction of theconstraint manifold and the man-
ifold of possible movement. From Eqs. (5-6) we can see that the generalized coordinates on
velocity and acceleration level have to be orthogonal to theconstraints. Then, the Jacobian ma-
trix of constraintsC can be interpreted as a collection of vectors in the constrained directions.
For system configurations where these vectors become dependent, a solution is no longer easily
possible. Therefore, in this context optimal describes thefact that we find one orthonormal
basis for each of the two subspaces, the possible movements and the directions of the reaction
forces. There are two convenient methods to find all vectors which are orthogonal to a certain
matrix, the Singular Value Decomposition (SVD) and the QR decomposition. Both algorithms
are available in Matlab, a detailed explanation can be found, e.g., in [8].

4.4.1 QR decomposition

A QR decomposition of the transposed Jacobian matrix of the constraintsCT results in

CT =
[

Q1 Q2

]
·
[

R1

0

]
= Q1 · R1 . (20)

The column vectors ofQ1 andQ2 are orthonormal, while the matrixR1 is an upper triangular
matrix. In many applications the matrix to be decomposed hasfull rank and thus no matrixQ2.
The idea of a QR decomposition is to split a given matrix into an orthogonal matrix and the
remaining part which results in an upper triangular matrix.Then the orthogonal matrix is the
optimal set of vectors which could be used as a basis to span the given space. Therefore, here
the column vectors of matrixQ1 are an optimal basis of the constraint manifold, and analog the
matrix Q2 for the valid motions. Therefore, a projection on the space described byQ2 results
in an optimal linear combination of generalized coordinates for the current configuration.

By comparison with Eq. (15) we find

ÿ = Q2 · ÿi + Q1 · ÿd , (21)

7

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

and can thus identifyJi = Q2. Please note that the independent and dependent generalized
coordinatesyi andyd are no longer single elements of the vectory and a vectorized formula-
tion as in Eq. (15) is no longer possible. If we insert the justreceived result in the constraint
equations on acceleration level, see Eq. (7), we obtain

C · Q2 · ÿi + C · Q1 · ÿd + b′′ = 0 . (22)

With Eq. (20) we get

RT
1 · QT

1 · Q2︸ ︷︷ ︸
=0

·ÿi + RT
1 · QT

1 · Q1︸ ︷︷ ︸
=I

·ÿd + b′′ = 0 . (23)

Using Eq. (21), we can summarize for the generalized accelerations

ÿ = Ji · ÿi − Q1 · R−T
1 · b′′ = Ji · ÿi + γ . (24)

The last equation was set up so the comparison with the methodpresented next is easier.

4.4.2 Singular value decomposition

Similar to the usage of the QR decomposition, the singular value decomposition can be used

CT =
[

U1 U2

]
·
[

Σ
0

]
· VT = U1 · Σ ·VT . (25)

The singular value decomposition also finds an optimal basisand for non-square matrices vec-
tors to span the remaining directions. Again, most often this method is used to find a good basis
to a given set of vectors, however we are more interested in the good basis of the remaining
coordinate space, denoting the valid motions. Analog to thejust described QR decomposition
we can identify the matrixJi = U2 and obtain

C · U2 · ÿi + C · U1 · ÿd + b′′ = 0 . (26)

Inserting the relationC = V · Σ · UT
1 leads to

ÿd = −Σ−1 · VT · b′′ , (27)

which results in
ÿ = Ji · ÿi −U1 · Σ−1 · V−T

1 · b′′ = Ji · ÿi + γ . (28)

4.5 Automatic separation of coordinates

Equations (24) and (28) allow us to choose any of the two presented methods to switch
between all generalized coordinatesy and the independent coordinatesyi. We now have to
combine the projected velocities as in Eq. (14) with the equations of motion in the independent
coordinates and the constraints on acceleration level, seeEq. (18).

Using the abbreviations of Eq. (24) we obtain the equations of motion as

JT
i · M · Ji · ÿi + JT

i · k− JT
i · q + JT

i · M · γ = 0 . (29)

These equations of motion are now in minimal form and always use an optimal choice of gener-
alized coordinates. In order to use them for a time integration, they now have to be transformed
back to the complete vector of generalized coordinates using Eq. (24).

8

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

The independent and dependent generalized coordinatesyi andyd are linear combinations of
the generalized coordinatesy. For the velocity level, we use Eq. (14) to calculate the indepen-
dent velocities and from them calculate the full vector of generalized velocities and similarly
for the acceleration level using Eq. (15)

ẏ = Ji · JT
i · (ẏ − θ) + θ (30)

ÿ = Ji ·
(
JT

i ·M · Ji

)−1 ·
(
JT

i · k− JT
i · q + JT

i · M · γ
)

+ γ . (31)

Now we obtained the equations of motion in the full vector of generalized coordinates which
can be used for time integration.

5 Comparison of results

In order to compare the different ways to formulate the equations of motion, a slider crank
mechanism is used as an example, see Fig. 1.

Figure 2: Slider crank mechanism.

Usually when such a mechanism is modeled, one would start at the crank on the left side and
use relative angles up to the slider on the right. Then the loop closing condition would be to
prevent any motion iny-direction of the slider. However, here the mechanism has been modeled
starting from the right. Then two constraint equations are required, the possible coordinates
show distinct singular configurations, and the drift behavior is clearly visible. The generalized
coordinates are thex-coordinate of the slider, the rotation angleα of the rod, which is depicted
red and the relative rotation angleβ of the crank, depicted blue. The gravity shall act in negative
z-direction, then not appearing in the equations of motion. The shown configuration with an
initial velocity is used as initial condition for the time integration. No additional stabilization
has been used as the drift effect shall be considered, even though it is available in Neweul-M2.
One advantage of this simple model is that an analytical formulation of the equations of motion
can be easily set up as a reference.

This system has been modeled using all the formulations described above over two different
time intervals, see Table 1. The time used for all systems to set up the symbolic equations is

9

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

Table 1: Simulation times of a slider crank mechanism, simulated over different time intervals.

Formulation Modeling Time Simulation Time (40s) Simulation Time (300s)

Analytical 3.29 s 0.67 s 2.57 s
Explicit 2.56 s 2.73 s –
Partialexplicit 2.36 s 1.86 s –
Partition,yi = x 2.40 s 0.64 s 4.85 s
Partition,yi = α 2.41 s 0.63 s 4.62 s
Partition,yi = β 2.27 s 0.64 s 4.59 s
SVD 2.43 s 0.87 s 6.53 s
QR 2.52 s 0.81 s 6.31 s

roughly the same, which is listed in the column Modeling Timein Table 1. All systems could
be integrated over a time interval of 40 s, however, the DAE formulations did not reach the end
of the second time interval of 300 s. This comes from the drifteffect, which caused a violation
of the constraint equations too large to continue the integration, see Fig. 3. The comparison
of the simulation times shows that the DAE formulations takemuch longer than any other
simulation, when considering the 40 s time interval which all methods finished. The SVD
and QR method take longer as the manual selection of an independent coordinate, which was
expected as additional computations are necessary. For thelonger time interval, the advantage
of the analytical solution comes through, which has to be thefastest possible solution as it has
the smallest possible set of ordinary differential equations.

In Fig. 3 the violation of the constraint equation inx-direction is shown for five different
system formulations. The QR method shows no difference to the SVD method resulting in
congruent lines, which show the least drift effect. The fixedchoice of thex coordinate of
the slider as the independent coordinate results in the second best drift behavior. The other
manual choices would result in similar curves. However, here the restriction has to be made, that
by chance the integration algorithm always stepped over thesingular configuration, otherwise
resulting in bad results. But depending on the system, such amanual selection often reaches the
same drift behavior as the QR and SVD method. Therefore, as soon as the user knows enough
about the system, the manual selection is a very good choice.The QR and SVD method, on
the other hand, have the advantage of making optimal choicesindependent of the experience
of the user. When the system dimension and the number of constraint equations is increased,
the additional computational effort for these methods willincrease as well. The two DAE
formulations show a distinctly nonlinear, progressive drift behavior which caused the integration
not to reach the desired 300 s.

6 Conclusions

Different possibilities to formulate a system of differential algebraic equations have been
shown. These equations arise in mechanical multibody systems by the implementation of con-
straint equations as they result from kinematic loops. In Neweul-M2, such systems can be sim-
ulated keeping these algebraic constraint equations offering two formulations of the equations.
These results have been compared to an analytical solution and different ways to eliminate the
algebraic equations ending up with ordinary differential equations again. In the investigated
example, a slider crank mechanism, these ODE formulations were superior in both computa-
tional times and observable errors, here the drift behaviorhas been used as a representative.
The manual selection of independent coordinates seems to bea very good choice as long as the

10

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

t

C
on

st
ra

in
t v

io
la

tio
n

QR

SVD
partition y

i
=x

explicit

implicit

Figure 3: Violation of the constraint on position level iny-direction.

integration algorithm does not reach singular configurations and the user can choose a suitable
coordinate. The SVD or QR method provide reliable results with a very small drift effect and
reasonable computational effort.

Acknowledgement

This research is partially supported by SimTech, the Cluster of Excellence within the Stuttgart
Research Center for Simulation Technology. This support ishighly appreciated.

REFERENCES

[1] Kurz, T.; Eberhard, P.; Henninger, C.; Schiehlen, W.: From Neweul to Neweul-M2:
Symbolical Equations of Motion for Multibody System Analysis and Synthesis. Multi-
body System Dynamics, Vol. 24, No. 1, pp. 25–41, 2010.

[2] Popp, K.; Schiehlen, W.: Ground Vehicle Dynamics. Berlin: Springer, 2010.

[3] Schiehlen, W.; Eberhard, P.: Technische Dynamik – Modelle für Regelung und Simula-
tion (in German). Wiesbaden: Teubner, 2004.

[4] Seifried, R.; Held, A.; Dietmann, F.: Analysis of Feed-Forward Control Designs for
Flexible Multibody Systems. Journal of System Design and Dynamics, 2010. Special
Issue ACMD.

[5] Schwertassek, R.; Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme (in German).
Braunschweig: Vieweg, 1999.

[6] Fleissner, F.: Bewertung numerischer Verfahren zur Lösung differential-algebraischer
Systeme im Kontext mechanischer Mehrkörpersysteme. Diplomarbeit, Universität
Erlangen-Nürnberg, Lehrstuhl für Technische Mechanik, 2003.

11

ISBN 978-2-8052-0116-5

Thomas Kurz, Markus Burkhardt, Peter Eberhard

[7] Leister, G.; Bestle, D.: Symbolic-Numerical Solution of Multibody Systems with Closed
Loops. Vehicle System Dynamics, Vol. 21, pp. 129–142, 1992.

[8] Golub, G.; Van Loan, C.: Matrix Computations. Baltimore: The Johns Hopkins Univer-
sity Press,3rd Edn., 1996.

12

ISBN 978-2-8052-0116-5

