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Abstract. The research software Neweul-M? can be used to set up the equations of motion for
rigid or elastic mechanical multibody systems symbolically. Depending on the structure of the
system, this results in ordinary differential equations or systems of equations with additional
algebraic constraint equations. These differential algebraic equations can either be solved di-
rectly or reformulated to improve the behavior during a timeintegration. Here, several different
formulations are presented and compared.
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1 Introduction

Symbolic equations are desirable for a number of engingeqiplications. They are prefer-
able for real-time applications and uses, where the systeath 80t only be integrated over
the time. This includes optimization, control design, oplagations where their easy export to
other simulation environments is very useful. On the otlardy symbolic modeling of me-
chanical systems always has to fight against problems grigam the complexity of systems,
which usually can be handled easier by numerical algorithiese, possibilities to formulate
systems with kinematic loops shall be presented and imadsti. Such systems are common
in many technical applications, but at first result in diéfietial algebraic equations, and not in
ordinary differential equations which are easier to handlger an overview over the research
software Neweul-M the equations are set up and possible formulations are shwiioh are
then investigated and compared for a slider crank mechanism

2 Neweul-M: A Research Software

The symbolical formalism Neweul-}Ms a research software for the modeling, analysis and
simulation of multibody systems, see [1]. It is based on tleatén-Euler equations and the
principles of d’Alembert and Jourdain, see [2] and [3]. NaW®? is implemented in Mat-
lab calling Maple or MuPad, whichever is present, through Symbolic Math Toolbox for
the symbolic manipulations. The system description isestan a data structure containing all
kinematic values and other necessary symbolic expresdtanshe numerical evaluation, files
in the Matlab language are written automatically, whichntiban also be used for other appli-
cations. The equations of motion, e.g., can be solved by regiation code for ordinary or
differential algebraic equations, respectively. As apiessions are available symbolically, they
can easily be exported to another programming languagen Ere expressions, e.g. Simulink
S-functions in C can be created automatically. Most comralgpcograms use solely numerical
algorithms for the modeling and simulation of multibodyteyss. Then, the modeling can be
based on catalogues, e.g., of constraints or force elepardsa time integration is easily pos-
sible even for complex systems. However, it is advantagé&musiany applications to obtain
a symbolical formulation, which shall be shortly discussethe following. When a system is
modeled symbolically, the describing kinematic values Melocity and acceleration, as well
as the equations of motion are expressed depending on efeed variables. Those variables
are read from the input data and used to obtain all necessantities. After the kinematic val-
ues and equations of motion have been derived only once ctireype used for fast numerical
evaluations. Since the expressions are set up prior to threencal simulations, those evalua-
tions are very fast, allowing real-time applications. Wipenforming a parameter optimization
of nonlinear equations, the fast calculation of gradients & high accuracy is crucial. The
symbolic system formulation can be used in the calculaticth@se gradients in analytical or
semi-analytical formalisms, depending on the optimizatdteria. When the criterion func-
tion depends on a numerical time integration of the equataiimotion, these semi-analytical
gradients reach an accuracy in the same order of error asrtaéritegration involved, and can
be obtained fully automatic. Also when a controller is to lesigned, the symbolical expres-
sions allow more possibilities and strategies than mereemigiad algorithms, see [4]. In the
following, some recent developments shall be presentedtie basics have been summarized.
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3 Systems with tree structure

The software Neweul-Kuses the Newton-Euler equations, which are convenientlysis
the respective frame of reference of each body, see [5].ysbems with tree structure, this can
be easily done. A system has a tree structure as long as evamjilcate system and body has
clearly only one frame of reference with respect to whichas been defined, see Fig. 1.

7 (L

Figure 1: Difference between systems with tree or loop stingc

Here, usually the constraint equations are not explicdlyrulated but are contained in the
possible motion of the coordinate systems. By a premuttion with the transposed global
Jacobian matrid, the equations of motion can be obtained

J'M-J-y4+IT - qo=3" - q"+J"-Q-X. (1)

Here the generalized coordinates are denoted and M is the global mass matrix of the
Newton-Euler equations. The forces are split ugyinvhich contains local accelerations and
will result in generalized Coriolis, centrifugal and gycopic forcesg® are the applied forces
and are the reaction forces, together with the distributionrmd®. As this premultiplication
eliminates the reaction forces, the following abbreviagican be introduced for the equations
in minimal form, where all generalized coordinates are patalent

M-y+k=q. (2)

Here, the generalized applied forces are collected in thtove, the generalized centrifugal,
Coriolis and gyroscopic forces are in the vedtoiwhile M is the minimal mass matrix.
4 Systems with kinematic loops

When additional algebraic constraint equations are intted, they are commonly added to
the system of equations together with Lagrangian multiglieesulting in a set of Differential
Algebraic Equations (DAE).

4.1 Differential Algebraic Equations

A set of Differential Algebraic Equations (DAE) is obtainbg adding the constraint equa-
tionsc = 0 or one of its time derivatives to the existing Ordinary Di#fatial Equations (ODE),
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see Eq. (2)
M-y+k = q+C7-A (3)
¢(t,y,y) = 0. (4)

Here the generalized coordinatgsare no longer all independent, but due to the constraint
equations they depend on each other. There exist many ati@gralgorithms to solve such
kind of systems. However, most of them require the condtexqnations to be formulated on
acceleration level. This means, that the integration &@lgorperforms a root search in every
step to fulfill the constraint equations within the giveretainces. However, the velocity and
position level constraints are not completely satisfied wutegration errors, which is the
so called drift error. This means that one criterion to corapghe different formulations of
systems which started as DAE-systems is the drift beha@bcourse the computational effort
necessary to solve the equations is another criterion.

Starting from the constraint equations on position level

c(t,y)=0, (5)
we can obtain the constraint equations on velocity and acagbn level
oc oc
c(t,y,y) = —y+—=C-y+b' =0 6
e(t,y,y) oy Yo y+ (6)
. - W . db . "

Usually the equations of motion are formulated using thestamt equations on acceleration
level ¢, which then can be written in matrix notation as

M CT y q—k
RN RV ) ®

The additional constraint equations provide another diltiyc The user has to specify gen-
eralized coordinates and corresponding constraint espsatWhile it is quite easy to formulate
them reasonably for the initial configuration, it may be quditfficult in the whole coordinate
space. It may happen that two or more of the constraint espumabecome linearly dependent.
This means that the system has a singular configuration ichithe equations may not be solv-
able. The system can reach these configurations, just theecbiogeneralized coordinates will
be not suitable for the description.

Since many integration algorithms require the matrix onléfehand side to be constant,
the Eg. (8) is not suitable. Also, many standard integrasilgorithms require a state-space
representation of the equations of motion, two possibgifor this are implemented in Neweul-
M?2. The first is an explicit formulation

I 00 y y
0T O|-|§|=|M'"(q-k+C"-X) | . 9)
0 00 A ¢

The second available formulation is an implicit formulatio

I 000 y y
0I 00 vy | ¥
0000 Y| | M-y+k—q-C"-X |~ (10)
0 00O A ¢
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The naming comes from the formulation of the actual equatmimotion as the part due to
the state space formulation is always explicit and the caimgtequations always implicit in
Neweul-M. The main difference is that the first formulation requirgher the mass matrix
M to be inverted, or usually the corresponding system of égpsito be solved. This is done
implicitly in the second formulation by a root search. Hoee\this comes at the expense of a
larger state vector.

The DAE formulation is usually a good way to simulate the egstas long as the system
does not reach singular configurations, see [6]. Then itite gunpredictable what will happen.
Therefore, it is interesting to investigate other posgibs to satisfy the algebraic constraints in
the equations.

4.2 Separation of coordinates, basic algorithm

Let us for now assume that the system does not reach a sirmmpg@ion. Then the problem
is, to make a good choice of independent coordingtesnong all available generalized coor-
dinatesy. As soon as this choice is made, it is possible to solve fadeglendent coordinates
y4 and use these values in the equations of motion. It is usimagipssible to do such a solution
symbolically and insert it into the equations of motion hesmof several possible solutions of
the constraint equations and required information toratach a step. However, we will later
refine this algorithm so that it can be applied generally.

Starting from the constraint equations (5-7), let us sdpate generalized coordinatgs
into independeny; and dependent coordinatgs. When using variational calculus and also
separating the Jacobian matrix of the constraitise get

[Ci cd][gﬂ:o. (11)

This means that the variation of the generalized coordsiads to respect the constraint equa-
tions, but by solving this for the dependent variations we i@&vrite this equation and obtain

| Oy | I _
5}’—{5%]—{_Cgl‘ci}'(S}’i—Ji'(Syz" (12)
With this, we can rewrite the constraint equations on véydevel, Eq. (6), to
Ci-yi+Cq-ys+b' =0, (13)
or
- Ivi] I o 0 — ..y
Similarly with Eq. (7) on acceleration level it follows
N 7 I 0 I
y_|:yd}_|:_cgl‘ci:| yz‘i‘{_cgl‘b//}—']z Yit . (15)

Here again, the matri¥; appears, which can be used to transform the equations cbmiotio
the space of the independent generalized coordinates

J'M- 3y, + I k+ I M-y =" q. (16)
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To write these equations of motion in state-space form, thesttaint equations on velocity
level, Eq. (14), and the part of the dependent acceleratbis). (15) can be combined with
the equations of motion solved for the independent acdédess Eq. (16), to obtain

Vi - I . 0
FIR A R e )

{YZ} [(J;f.M.JZ.)—l,(J%F,q_'];f.k_'];f.l\/[.fy)]
Yd

_Cgl -G, -y, — C;l %

In the last line, the independent accceleratipnare contained. It looks strange to have those
variables on the right hand side of the equation, but as takiatton goes from top to bottom,
the just calculated results can be used. This formulatigrtiadvantage to use the constraint
equations to obtain the matrik; with which the equations of motion can be transformed to
minimal form. As we used the constraint equations on acagter level, we could not make
an improvement concerning the drift effect. As we have a rabselection of the independent
coordinates, this does not solve any problem with singigari Here they appear as problems
in the inversion of the dependent part of the constraintidiacomatrixC,.

(18)

4.3 Improvements to the basic algorithm

As we just saw, there are still some open issues in this fata. We can address them in
several steps. At first, it is very useful to use indexing aftees and matrices, which can be
done very conveniently in Matlab. This allows us to switobnirthe stacking of independent
coordinates on top of the dependent ones to an elementwaséfidation. It improves this
method as it allows us to smoothly exchange the coordinatéswwe consider as independent
if their choice becomes troublesome. This means, we coulddltate a transformation matrix
T to choose the independent and dependent vectors

[;';}:T-y. (19)

Here this matrix would simply contain ones or zeros to setecrdinates. However, if we
can find a suitable matri{’, we can use the best linear combinationsyoés independent
coordinates. Such a formulation was described in [7]. Tleeadsuch a transformation matrix
has two possible conclusions. Either we consider the matixbe constant and update it only
upon violation of some criterion. Then, the choice of copadies is not optimal, but it is easy
to implement. If we want to determine such a matrix in evemyetistep, Leister and Bestle [7]
had to rewrite the integration algorithm, which is also nallsesatisfying solution.

To evaluate the equations of motion we want to transform #reeplized coordinatgson
a minimal formulationy;, which consists of the optimal linear combinations of alhgelized
coordinates. This happens inside the function called byrtegration algorithm, as described
in the following scheme.

So we can conclude the following steps

e The integration algorithm calls the m-file function and gmsghe complete vector of
generalized coordinatgs

— Calculate the transformation matflx which describes the optimal linear combina-
tion of generalized coordinatgs and the corresponding dependent coordingtes
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— Transform the generalized coordinates and all expressitmthe space of minimal
coordinatesy;

— Evaluate the equations of motion in minimal form §or
— Evaluate the constraint equations to obtain values for épeddent coordinates

— Perform back transformation so the generalized coordénatean be passed back
to the integrator

e Prepare the next integration step

It is the advantage of the algorithm which was just explajniegt we always get the optimal
linear combination of generalized coordinates to desdfilgesystem in this time step. As
the integration algorithm is always considering the samk state vector we don’t have any
problems with additional derivatives of the transformatid herefore, we can now investigate
how to find this optimal linear combination.

4.4 Optimal linear combination of generalized coordinates

As the generalized coordinates have to fulfill the constragquations, it is useful to imag-
ine valid directions for the generalized coordinates artldogonal to them the reaction forces
caused by the constraints. This results in a depiction otdmstraint manifold and the man-
ifold of possible movement. From Egs. (5-6) we can see tfegdmeralized coordinates on
velocity and acceleration level have to be orthogonal tactivestraints. Then, the Jacobian ma-
trix of constraintsC can be interpreted as a collection of vectors in the comstchdirections.
For system configurations where these vectors become depeadsolution is no longer easily
possible. Therefore, in this context optimal describesféioe that we find one orthonormal
basis for each of the two subspaces, the possible movenmahth@ directions of the reaction
forces. There are two convenient methods to find all vectdrishvare orthogonal to a certain
matrix, the Singular Value Decomposition (SVD) and the QRameposition. Both algorithms
are available in Matlab, a detailed explanation can be fpargd, in [8].

4.4.1 QR decomposition

A QR decomposition of the transposed Jacobian matrix of dinstcaintsC” results in

CT:[QI Q2]'{%I}ZQ1'R1. (20)

The column vectors of); andQ, are orthonormal, while the matriR, is an upper triangular
matrix. In many applications the matrix to be decomposediibsank and thus no matrigs.
The idea of a QR decomposition is to split a given matrix imooagthogonal matrix and the
remaining part which results in an upper triangular matfiken the orthogonal matrix is the
optimal set of vectors which could be used as a basis to sgagiten space. Therefore, here
the column vectors of matriQ, are an optimal basis of the constraint manifold, and andleg t
matrix Q, for the valid motions. Therefore, a projection on the spaescdbed byQ, results
in an optimal linear combination of generalized coordisdte the current configuration.

By comparison with Eg. (15) we find

YV=Q -y +Qi-ya, (21)
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and can thus identify; = Q,. Please note that the independent and dependent gengralize
coordinateg/; andy, are no longer single elements of the vegtasnd a vectorized formula-
tion as in Eq. (15) is no longer possible. If we insert the jeskeived result in the constraint
equations on acceleration level, see Eq. (7), we obtain

C-Q y:+C-Q-Js+b"=0. (22)
With Eq. (20) we get
Ri Q- Q¥ +Ri-Q Qi Ja+Db"=0. (23)
=0 =1

Using Eq. (21), we can summarize for the generalized acateers
y=Ji 5i—Q -RT-b'=J;-yi+v. (24)

The last equation was set up so the comparison with the metteseénted next is easier.

4.4.2 Singular value decomposition
Similar to the usage of the QR decomposition, the singullrevdecomposition can be used

P

- [ U, Ug][o

}-VT:UyE-VT. (25)

The singular value decomposition also finds an optimal kasisfor non-square matrices vec-
tors to span the remaining directions. Again, most oftesntiethod is used to find a good basis
to a given set of vectors, however we are more interestedeigtiod basis of the remaining

coordinate space, denoting the valid motions. Analog tqukedescribed QR decomposition

we can identify the matrid; = U, and obtain

C-Uy y,+C-U;-y,+b"=0. (26)
Inserting the relatiol© = V - X - U7 leads to
yo=-2"'-V'.p", (27)

which results in
y=J3,-9-U -2 VT =T 5+ (28)

4.5 Automatic separation of coordinates

Equations (24) and (28) allow us to choose any of the two ptesemethods to switch
between all generalized coordinatesand the independent coordinates We now have to
combine the projected velocities as in Eq. (14) with the éqna of motion in the independent
coordinates and the constraints on acceleration leveEge€l8).

Using the abbreviations of Eq. (24) we obtain the equatidmsation as

M-, 5, +37 k—JT . q+I7 - M-~v=0. (29)

These equations of motion are now in minimal form and alwagsan optimal choice of gener-
alized coordinates. In order to use them for a time integnathey now have to be transformed
back to the complete vector of generalized coordinategusin (24).
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The independent and dependent generalized coordipadesly ; are linear combinations of
the generalized coordinatgs For the velocity level, we use Eq. (14) to calculate the pate
dent velocities and from them calculate the full vector afigralized velocities and similarly
for the acceleration level using Eq. (15)

y = Ji-Ji - (y-0)+0 (30)

v o= 37T M-3) (T k=3 q+IT - M-7y) 7. (31)
Now we obtained the equations of motion in the full vector ehgralized coordinates which
can be used for time integration.

5 Comparison of results

In order to compare the different ways to formulate the g@quatof motion, a slider crank
mechanism is used as an example, see Fig. 1.

0.6/ ! ! ! !
0.4

0.2

Figure 2: Slider crank mechanism.

Usually when such a mechanism is modeled, one would stdréatraink on the left side and
use relative angles up to the slider on the right. Then thp osing condition would be to
prevent any motion ig-direction of the slider. However, here the mechanism has beodeled
starting from the right. Then two constraint equations @&euired, the possible coordinates
show distinct singular configurations, and the drift bebais clearly visible. The generalized
coordinates are the-coordinate of the slider, the rotation angl®f the rod, which is depicted
red and the relative rotation angteof the crank, depicted blue. The gravity shall act in negativ
z-direction, then not appearing in the equations of motiohe $hown configuration with an
initial velocity is used as initial condition for the timetegration. No additional stabilization
has been used as the drift effect shall be considered, eveghilit is available in Neweul-&
One advantage of this simple model is that an analytical édation of the equations of motion
can be easily set up as a reference.

This system has been modeled using all the formulationgiteesicabove over two different
time intervals, see Table 1. The time used for all systemgtas the symbolic equations is
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Table 1: Simulation times of a slider crank mechanism, satad over different time intervals.

| Formulation | Modeling Time| Simulation Time (40s] Simulation Time (300s)
Analytical 3.29s 0.67 s 257s
Explicit 2.56s 2.73s —
Partialexplicit 2.36s 1.86s -
Partition,y; = x 2.40s 0.64s 4.85s
Partition,y; = « 2.41s 0.63s 462 s
Partition,y; = 2.27s 0.64 s 459 s
SVD 2.43s 0.87s 6.53s
QR 2.52s 0.81s 6.31s

roughly the same, which is listed in the column Modeling Tim&able 1. All systems could
be integrated over a time interval of 40 s, however, the DAfdations did not reach the end
of the second time interval of 300 s. This comes from the dfftct, which caused a violation
of the constraint equations too large to continue the iatiggn, see Fig. 3. The comparison
of the simulation times shows that the DAE formulations takach longer than any other
simulation, when considering the 40 s time interval whichnaéthods finished. The SVD
and QR method take longer as the manual selection of an indepecoordinate, which was
expected as additional computations are necessary. Ftoriger time interval, the advantage
of the analytical solution comes through, which has to bddktest possible solution as it has
the smallest possible set of ordinary differential equedio

In Fig. 3 the violation of the constraint equationardirection is shown for five different
system formulations. The QR method shows no difference éoS¥MD method resulting in
congruent lines, which show the least drift effect. The fixdwice of thex coordinate of
the slider as the independent coordinate results in thenselsest drift behavior. The other
manual choices would result in similar curves. Howevereltlee restriction has to be made, that
by chance the integration algorithm always stepped ovesitiglar configuration, otherwise
resulting in bad results. But depending on the system, sutéiraual selection often reaches the
same drift behavior as the QR and SVD method. Therefore,@sa®the user knows enough
about the system, the manual selection is a very good chdice.QR and SVD method, on
the other hand, have the advantage of making optimal chaicependent of the experience
of the user. When the system dimension and the number ofreamséquations is increased,
the additional computational effort for these methods wtrease as well. The two DAE
formulations show a distinctly nonlinear, progressivétdhehavior which caused the integration
not to reach the desired 300 s.

6 Conclusions

Different possibilities to formulate a system of differahtalgebraic equations have been
shown. These equations arise in mechanical multibody syshy the implementation of con-
straint equations as they result from kinematic loops. Iwé&ld-M?, such systems can be sim-
ulated keeping these algebraic constraint equationsiadféwo formulations of the equations.
These results have been compared to an analytical soluttbdiéferent ways to eliminate the
algebraic equations ending up with ordinary differentig@li&ions again. In the investigated
example, a slider crank mechanism, these ODE formulatiare wuperior in both computa-
tional times and observable errors, here the drift behdvasr been used as a representative.
The manual selection of independent coordinates seemsa@éy good choice as long as the
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Figure 3: Violation of the constraint on position levekjrdirection.

integration algorithm does not reach singular configuretiand the user can choose a suitable
coordinate. The SVD or QR method provide reliable resulth aivery small drift effect and
reasonable computational effort.
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