|
|
Die folgenden Simulationsbeispiele wurden mit dem Partikelsimulationsprogramm
Pasimodo erzeugt. Mit ein paar Ausnahmen, bei denen die Visualisierung durch
Raytracing mit Blender erfolgte oder bei denen ParaView als
Visualisierungswerkzeugt verwendet wurden, wurden sämtliche Videos im post-processing
mit Pasimodo erzeugt.
Hier geht's zur Beschreibung der Software Pasimodo.
-
Test-Simulationen der Kühlschmierstoff-Versorgung für Wendelbohrer mit der SPH Methode
(top: different dynamic viscosities and NCP-interaction test, bottom: viscous as water)
-
Simulation mit
Pasimodo
und Visualisierung mit Paraview:
Dirk Schnabel,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
Entwicklung, Implementierung und Erweiterung des SPH-Plugins:
A. Müller,
D. Schnabel und
C. Gnanasambandham,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
In Kooperation mit:
Dr.Ing Ekrem Özkaya,
Institut für Spanende Fertigung (ISF), TU Dortmund
Prof. Dr.Ing Dirk Biermann,
Institut für Spanende Fertigung (ISF), TU Dortmund
-
Simulation des Kühlschmierstoffs für Einlippen Bohrer mit der SPH Methode
(top: fast movies, bottom: slow movies)
-
Simulation mit
Pasimodo
und Visualisierung mit Paraview:
Dirk Schnabel,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
Entwicklung, Implementierung und Erweiterung des SPH-Plugins:
A. Müller,
D. Schnabel und
C. Gnanasambandham,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
In Kooperation mit:
Dr.Ing Ekrem Özkaya,
Institut für Spanende Fertigung (ISF), TU Dortmund
Prof. Dr.Ing Dirk Biermann,
Institut für Spanende Fertigung (ISF), TU Dortmund
-
Test-Simulation für die Kopplung SPH-DEM und DEM-Reibung (last simulation bottom)
(top: 3D Dam Break with DEM-Multisphere Chips, bottom: 2D Dam Break with DEM-Multisphere Cubes)
-
Simulation mit
Pasimodo
und Visualisierung mit Paraview und Blender:
Dirk Schnabel und Veit Woerner,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
Entwicklung, Implementierung und Erweiterung des SPH-Plugins:
A. Müller,
D. Schnabel und
C. Gnanasambandham,
Institut für Technische und Numerische Mechanik (ITM), Universität Stuttgart
-
In Kooperation mit:
Dr.Ing Ekrem Özkaya,
Institut für Spanende Fertigung (ISF), TU Dortmund
Prof. Dr.Ing Dirk Biermann,
Institut für Spanende Fertigung (ISF), TU Dortmund
Diskrete Elemente Methode
Hybride Diskrete Elemente Methode
-
Simulation eines orthogonalen Zerspanprozesses.
Modellerstellung:
Timo
Gaugele im Rahmen des
DFG SPP 1180
-
Simulation eines Zugversuchs mit einer hochelastischen Silikon-Zugprobe.
Modellerstellung:
Christian Ergenzinger
-
Schottersteine aus brechbar verbundenen Partikeln werden verschiedenen Belastungsszenarien unterworfen:
1. Zyklische Belastung.
2. Oedometrische Kompression. (Im Video sind zunaechst alle Partikel dargestellt, anschließend nur diejenigen
Partikel, die an Bruchvorgängen beteiligt sind.)
3. Eindrücken einer Schwelle in ein Schotterbett.
Modellerstellung:
Christian
Ergenzinger
im Rahmen des
DFG SFB 716
-
Simulation eines mehrachsigen Druckversuchs an einer Gesteinsprobe
(Bruchbereiche farbcodiert).
Modellerstellung:
Celine Geiger (Studienarbeit),
Christian
Ergenzinger
-
Schrägrückprall eines elastischen Balls von einer starren Ebene.
Modellerstellung:
Florian Fleißner
-
Simulation einer nahezu biegeschlaffen Membran, die auf ein Hindernis
fällt.
Modellerstellung:
Florian Fleißner
-
Ein Torus fällt auf eine Membran aus elastisch verbundenen
kugelförmigen Partikeln. Nur die Verbindungen mit
Farbcodierung der darin wirkenden Kräfte sind dargestellt.
Modellerstellung:
Florian Fleißner
-
Simulation eines plastischen Seiles unter Eigengewicht.
Modellerstellung:
Timo Gaugele
-
Simulation eines Flechtvorgangs mit fünf Fäden, modelliert als
Kette kugelförmiger Partikel. Die Kugeln werden durch linear elastische
Verbindungen zum Faden zusammengehalten.
Modellerstellung:
Florian Fleißner
Smoothed Particle Hydrodynamics
-
Simulation einer in einem Fluid fallenden, starren Kugel.
Modellerstellung und Simulation:
David Vetsch (Versuchsanstalt für Wasserbau, Hydrologie und Gloziologie der
ETH Zürich).
-
Simulation eines Abfüllvorganges.
Abgebildet ist das Ausströmen von Wasser aus einer Düse in einen Standbeutel.
Modellerstellung:
Alexandra
Müller
-
Simulation eines Gefrierprozesses.
Die Temperatur der Partikel am oberen Rand sowie im Zentrum ist konstant über die Zeit.
Gefrorene Partikel sind in der Darstellung größer als flüssige.
Modellerstellung:
Alexandra
Müller
-
Simulation eines Laserschweißprozesses von Aluminium.
Das Werkstück liegt auf einer schiefen Ebene und die Anfangstemperatur beträgt 20 °C.
Im Laufe der Simulation bildet sich ein Schmelzbad und die Schmelze fließt nach unten.
Modellerstellung:
Haoyue Hu
-
Simulation eines Phasenübergangs während des Laserschweißens von Aluminium.
Die blauen Festkörper-Partikel verhalten sich thermoelastisch, die roten Fluid-Partikel folgen den Navier-Stokes-Gleichungen und bilden das Schmelzbad.
Modellerstellung:
Haoyue Hu
-
Simulation eines Laser-Tiefschweißprozesses von Aluminium.
Die grauen Partikel bilden die feste Phase, die blauen Partikel das flüssige Schmelzbad und die hellgrauen Partikel repräsentieren das erstarrte Material.
Verdampfung wird durch den Rückstoßdruck auf die Schmelze berücksichtigt, die Gasphase wird aktuell nicht mitmodelliert.
Modellerstellung:
Haoyue Hu
-
Simulation eines Laser-Tiefschweißprozesses von Eis.
Links ist der Eisblock in grau und das Schmelzbad (Wasser) in blau dargestellt.
Verdampfung wird durch den Rückstoßdruck auf die Schmelze berücksichtigt, die Gasphase wird aktuell nicht mitmodelliert.
Rechts sind die absorbierten Intensitäten (Maximum: rot, Minimum: blau) an der Kapillarfront visualisiert, welche mithilfe eines Raytracing-Programms vom IFSW berechnet werden.
Modellerstellung:
Haoyue Hu
-
Simulation von zwei nicht mischbaren Fluiden mit unterschiedlichen Dichten in einem Dammbruch-Szenario.
Modellerstellung:
Weiran Lin (Studienarbeit), Haoyue Hu
-
Eine Rayleigh-Taylor Instabilität tritt an der Grenzfläche zwischen zwei Fluiden mit unterschiedlichen Dichten auf, welche gegeneinander beschleunigt werden.
Modellerstellung:
Weiran Lin (Studienarbeit), Haoyue Hu
-
Simulationen von elastischen Materialien mit Zugversagen.
Aufgetragen ist entweder die Schädigung der einzelnen Partikel von 0 (unbeschädigt) bis 1 (vollständig beschädigt) oder die von Mises-Spannung.
|
|
|
|
|
Scherversuch mit Basalt. Das Material am oberen Rand wird nach rechts geschoben.
|
|
Zugversuch mit Basalt. Die letzten Partikelreihen auf der rechten Seite werden nach außen gezogen.
|
|
Basalt-Zugversuch mit Einkerbungen.
|
|
|
|
|
|
|
Kompaktzugversuch (CT-Probe, DIN EN ISO 12737) Aluminium.
Eine eingekerbte Probe wird ober- und unterhalb der Kerbe auseinandergezogen.
|
|
Modellerstellung:
Thomas Erk (Studienarbeit),
Alexandra
Müller
Kerbschlagbiegeversuch nach Charpy (DIN 10045) zur Charakterisierung der Eigenschaften des Werkstoffs AlMg3 unter schlagartiger Beanspruchung.
Der als Starrkörper modellierte Hammer deformiert die gekerbte Probe und wird hierdurch abgebremst.
Modellerstellung:
Fabian
Spreng
SPH-Simulation eines orthogonalen Zerspanprozesses für den Vergütungsstahl C45E bei einer Schnittgeschwindigkeit von 1,6 m/s (blau = niedrige von Mises-Vergleichsspannung; rot = hohe von Mises-Vergleichsspannung).
Modellerstellung:
Fabian
Spreng
Adaptive SPH-Simulation eines orthogonalen Zerspanprozesses für die Aluminiumlegierung AlMg3 bei einer Schnittgeschwindigkeit von 1,6 m/s (blau = ursprüngliche Partikel; rot = verfeinerte Partikel).
Modellerstellung:
Fabian
Spreng
Dreidimensionale SPH-Simulation eines Zerspanprozesses für den Vergütungsstahl C45E bei einer Schnittgeschwindigkeit von 1,6 m/s (blau = niedrige von Mises-Vergleichsspannung; rot = hohe von Mises-Vergleichsspannung).
Modellerstellung:
Fabian
Spreng
-
Simulationen von elastischen Materialien.
Aufgetragen ist jeweils die von Mises-Spannung.
|
|
|
Kollision elastischer Ringe.
|
|
Oszillierende Platte. Die Platte ist am linken Ende fest eingespannt und wird am rechten Ende durch eine aufgebrachte Geschwindigkeit ausgelenkt.
|
Modellerstellung:
Alexandra
Müller
-
Simulation des Schwappverhaltens von Fluiden abhängig von der Viskosität.
Modellerstellung:
Alexandra
Müller
-
Adaptive SPH-Simulation eines Dammbruchs mit zwei Hindernissen (blau = ursprüngliche Partikel; rot = verfeinerte Partikel).
Implementierung SPH-Plugin und Erweiterung um adaptive Verfeinerung/Vergröberung:
Alexandra
Müller
Modellerstellung und Simulation:
Dirk Schnabel,
Fabian Spreng
-
Simulation des Schwappverhaltens von Fluiden in Tanklastzügen.
Modellerstellung:
Alexandra
Müller,
Florian Fleißner
-
Smoothed Particle Hydrodynamics Simulationen, teilweise mit Diskrete Elemente
Simulationen gekoppelt.
Modellerstellung:
Alexandra
Müller (Diplomarbeit),
Florian Fleißner
Links
Informationen zur Partikelsimulationssoftware
Pasimodo.
Ansprechpartner
|
|